4 resultados para STACK
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
O trabalho tem como foco a análise do processo produtivo de painéis maciços feitos como tábuas e cavilhas de madeira ("stack-board") em uma fábrica austríaca, visando identificar seus pontos positivos e negativos e fornecer uma visão geral de algumas das principais variáveis envolvendo a manufatura desse produto.
Resumo:
This paper provides a brief but comprehensive guide to creating, preparing and dissecting a 'virtual' fossil, using a worked example to demonstrate some standard data processing techniques. Computed tomography (CT) is a 3D imaging modality for producing 'virtual' models of an object on a computer. In the last decade, CT technology has greatly improved, allowing bigger and denser objects to be scanned increasingly rapidly. The technique has now reached a stage where systems can facilitate large-scale, non-destructive comparative studies of extinct fossils and their living relatives. Consequently the main limiting factor in CT-based analyses is no longer scanning, but the hurdles of data processing (see disclaimer). The latter comprises the techniques required to convert a 3D CT volume (stack of digital slices) into a virtual image of the fossil that can be prepared (separated) from the matrix and 'dissected' into its anatomical parts. This technique can be applied to specimens or part of specimens embedded in the rock matrix that until now have been otherwise impossible to visualise. This paper presents a suggested workflow explaining the steps required, using as example a fossil tooth of Sphenacanthus hybodoides (Egerton), a shark from the Late Carboniferous of England. The original NHMUK copyrighted CT slice stack can be downloaded for practice of the described techniques, which include segmentation, rendering, movie animation, stereo-anaglyphy, data storage and dissemination. Fragile, rare specimens and type materials in university and museum collections can therefore be virtually processed for a variety of purposes, including virtual loans, website illustrations, publications and digital collections. Micro-CT and other 3D imaging techniques are increasingly utilized to facilitate data sharing among scientists and on education and outreach projects. Hence there is the potential to usher in a new era of global scientific collaboration and public communication using specimens in museum collections.
Resumo:
In the paper of Bonora et al. (2008) [3] we have shown, in the context of type II superstring theory, the classification of the allowed B-field and A-field configurations in the presence of anomaly-free D-branes, the mathematical framework being provided by the geometry of gerbes. Here we complete the discussion considering in detail the case of a stack of D-branes, carrying a non-abelian gauge theory, which was just sketched in Bonora et al. (2008) [3]. In this case we have to mix the geometry of abelian gerbes, describing the B-field, with the one of higher-rank bundles, ordinary or twisted. We describe in detail the various cases that arise according to such a classification, as we did for a single D-brane, showing under which hypotheses the A-field turns out to be a connection on a canonical gauge bundle. We also generalize to the non-abelian setting the discussion about "gauge bundles with non-integral Chern classes", relating them to twisted bundles with connection. Finally, we analyze the geometrical nature of the Wilson loop for each kind of gauge theory on a D-brane or stack of D-branes.
Resumo:
Trigeneration systems have been used with advantage in the last years in distributed electricity generation systems as a function of a growth of natural gas pipeline network distribution system, tax incentives, and energy regulation policies. Typically, a trigeneration system is used to produce electrical power simultaneously with supplying heating and cooling load by recovering the combustion products thermal power content that otherwise would be driven to atmosphere. Concerning that, two small scale trigeneration plants have been tested for overall efficiency evaluation and operational comparison. The first system is based on a 30 kW (ISO) natural gas powered microturbine, and the second one uses a 26 kW natural gas powered internal combustion engine coupled to an electrical generator as a prime mover. The stack gases from both machines were directed to a 17.6 kW ammonia-water absorption refrigeration chiller for producing chilled water first and next to a water heat recovery boiler in order to produce hot water. Experimental results are presented along with relevant system operational parameters for appropriate operation including natural gas consumption, net electrical and thermal power production, i.e., hot and cold water production rates, primary energy saving index, and the energy utilization factor over total and partial electrical load operational conditions. (c) 2011 Elsevier Ltd. All rights reserved.