7 resultados para SPECTROMETERS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The KASCADE-Grande experiment, located at Karlsruhe Institute of Technology (Germany) is a multi-component extensive air-shower experiment devoted to the study of cosmic rays and their interactions at primary energies 10(14)-10(18) eV. Main goals of the experiment are the measurement of the all-particle energy spectrum and mass composition in the 10(16)-10(18) eV range by sampling charged (N-ch) and muon (N-mu) components of the air shower. The method to derive the energy spectrum and its uncertainties, as well as the implications of the obtained result, is discussed. An overview of the analyses performed by KASCADE-Grande to derive the mass composition of the measured high-energy comic rays is presented as well. (C) 2012 Elsevier By. All rights reserved.
Resumo:
Comprehensive two-dimensional gas chromatography (GC x GC) is a powerful technique that provides excellent separation and identification of analytes in highly complex samples with considerable increase in GC peak capacities. However, since second dimension analyses are very fast, detectors with a rapid acquisition rate are required. Over the last years, quite a number of studies have discussed the potential and limitations of the combination GC x GC with a variety of quadrupole mass spectrometers. The present research focuses on the evaluation of qMS effectiveness at a 10,000-amu/s scan speed and 20-Hz scan frequency for the identification (full scan mode acquisition-TIC) and quantification (extracted ion chromatogram) of target pesticide residues in tomato samples. The following MS parameters have been evaluated: number of data points per peak, mass spectrum quality, peak skewing, and sensitivity. The validated proposed GC x GC/qMS method presented satisfactory results in terms of repeatability (coefficient of variation lower than 15%), accuracy (84-117%), and linearity (ranging from 25 to 500 ng/g), while significant enhancement in sensitivity was observed (a factor of around 10) under scan conditions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The photons scattered by the Compton effect can be used to characterize the physical properties of a given sample due to the influence that the electron density exerts on the number of scattered photons. However, scattering measurements involve experimental and physical factors that must be carefully analyzed to predict uncertainty in the detection of Compton photons. This paper presents a method for the optimization of the geometrical parameters of an experimental arrangement for Compton scattering analysis, based on its relations with the energy and incident flux of the X-ray photons. In addition, the tool enables the statistical analysis of the information displayed and includes the coefficient of variation (CV) measurement for a comparative evaluation of the physical parameters of the model established for the simulation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this work we present results of the first Townsend coefficient (alpha) in pure isobutane by measuring the current growth as a function of the electric field strength in a pulsed irradiation regime. A Resistive Plate Chamber (RPC)-like configuration was used. To validate this method, as well as to crosscheck the experimental apparatus, measurements of the alpha parameter were firstly carried out with pure nitrogen and the results compared to the accurate data available in the literature. The data obtained with isobutane in a field range from 145 Td up to 200 Td were well-matched to those calculated with Magboltz versions 2.7.1 and 2.8.6. The experimental consistency of these results with other published data in the range of 550-1300 Td was very good, as demonstrated by the use of the Korff parameterization. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Heavy-flavor production in p + p collisions is a good test of perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p + p results, quantified with the nuclear-modification factor (R-AA), provides information on both cold-and hot-nuclear-matter effects. Midrapidity heavy-flavor R-AA measurements at the Relativistic Heavy Ion Collider have challenged parton-energy-loss models and resulted in upper limits on the viscosity-entropy ratio that are near the quantum lower bound. Such measurements have not been made in the forward-rapidity region. Purpose: Determine transverse-momentum (p(T)) spectra and the corresponding R-AA for muons from heavy-flavor meson decay in p + p and Cu + Cu collisions at root s(NN) = 200 GeV and y = 1.65. Method: Results are obtained using the semileptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p(T) spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. Results: The charm-production cross section in p + p collisions at root s = 200 GeV, integrated over p(T) and in the rapidity range 1.4 < y < 1.9, is found to be d(sigma e (e) over bar)/dy = 0.139 +/- 0.029 (stat)(-0.058)(+0.051) (syst) mb. This result is consistent with a perturbative fixed-order-plus-next-to-leading-log calculation within scale uncertainties and is also consistent with expectations based on the corresponding midrapidity charm-production cross section measured by PHENIX. The R-AA for heavy-flavor muons in Cu + Cu collisions is measured in three centrality bins for 1 < p(T) < 4 GeV/c. Suppression relative to binary-collision scaling (R-AA < 1) increases with centrality. Conclusions: Within experimental and theoretical uncertainties, the measured charm yield in p + p collisions is consistent with state-of-the-art pQCD calculations. Suppression in central Cu + Cu collisions suggests the presence of significant cold-nuclear-matter effects and final-state energy loss.
Resumo:
Aims. We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 +/- 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 +/- 0.1. We discuss this value and also derive the mass and radius of the planet. Methods. We analyse the photometric transit curve of CoRoT-16 given by the CoRoT satellite, and radial velocity data from the HARPS and HIRES spectrometers. A combined analysis using a Markov chain Monte Carlo algorithm is used to get the system parameters. Results. CoRoT-16b is a 0.535 -0.083/+0.085 M-J, 1.17 -0.14/+0.16 R-J hot Jupiter with a density of 0.44 -0.14/+0.21 g cm(-3). Despite its short orbital distance (0.0618 +/- 0.0015 AU) and the age of the parent star (6.73 +/- 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very uncommon for this type of objects as tidal effects tend to circularise the orbit. This value is discussed taking into account the characteristics of the star and the observation accuracy.
Resumo:
The performance of inductively-coupled plasma optical emission spectrometers with axial and radial views for determination of iodine in table salt was evaluated. Interference and memory effects in nitric acid and water-soluble tertiary amines (CFA-C) media were studied. Based on a factorial experiment, one optimum instrument operational condition for axial configuration, and two optima conditions for radial configuration was established. The ICP OES with axial view was 5-fold more sensitive than the radial view. Both matrix matching and standard addition methods were used for iodine quantification and for most samples, both strategies of calibration led to similar results. Recoveries ranged from 104 to 114%.