4 resultados para SIS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: Decreasing costs of DNA sequencing have made prokaryotic draft genome sequences increasingly common. A contig scaffold is an ordering of contigs in the correct orientation. A scaffold can help genome comparisons and guide gap closure efforts. One popular technique for obtaining contig scaffolds is to map contigs onto a reference genome. However, rearrangements that may exist between the query and reference genomes may result in incorrect scaffolds, if these rearrangements are not taken into account. Large-scale inversions are common rearrangement events in prokaryotic genomes. Even in draft genomes it is possible to detect the presence of inversions given sufficient sequencing coverage and a sufficiently close reference genome. Results: We present a linear-time algorithm that can generate a set of contig scaffolds for a draft genome sequence represented in contigs given a reference genome. The algorithm is aimed at prokaryotic genomes and relies on the presence of matching sequence patterns between the query and reference genomes that can be interpreted as the result of large-scale inversions; we call these patterns inversion signatures. Our algorithm is capable of correctly generating a scaffold if at least one member of every inversion signature pair is present in contigs and no inversion signatures have been overwritten in evolution. The algorithm is also capable of generating scaffolds in the presence of any kind of inversion, even though in this general case there is no guarantee that all scaffolds in the scaffold set will be correct. We compare the performance of SIS, the program that implements the algorithm, to seven other scaffold-generating programs. The results of our tests show that SIS has overall better performance. Conclusions: SIS is a new easy-to-use tool to generate contig scaffolds, available both as stand-alone and as a web server. The good performance of SIS in our tests adds evidence that large-scale inversions are widespread in prokaryotic genomes.
Resumo:
Background: Previous studies show that chronic hemiparetic patients after stroke, presents inabilities to perform movements in paretic hemibody. This inability is induced by positive reinforcement of unsuccessful attempts, a concept called learned non-use. Forced use therapy (FUT) and constraint induced movement therapy (CIMT) were developed with the goal of reversing the learned non-use. These approaches have been proposed for the rehabilitation of the paretic upper limb (PUL). It is unknown what would be the possible effects of these approaches in the rehabilitation of gait and balance. Objectives: To evaluate the effect of Modified FUT (mFUT) and Modified CIMT (mCIMT) on the gait and balance during four weeks of treatment and 3 months follow-up. Methods: This study included thirty-seven hemiparetic post-stroke subjects that were randomly allocated into two groups based on the treatment protocol. The non-paretic UL was immobilized for a period of 23 hours per day, five days a week. Participants were evaluated at Baseline, 1st, 2nd, 3rd and 4th weeks, and three months after randomization. For the evaluation we used: The Stroke Impact Scale (SIS), Berg Balance Scale (BBS) and Fugl-Meyer Motor Assessment (FM). Gait was analyzed by the 10-meter walk test (T10) and Timed Up & Go test (TUG). Results: Both groups revealed a better health status (SIS), better balance, better use of lower limb (BBS and FM) and greater speed in gait (T10 and TUG), during the weeks of treatment and months of follow-up, compared to the baseline. Conclusion: The results show mFUT and mCIMT are effective in the rehabilitation of balance and gait. Trial Registration ACTRN12611000411943.
Resumo:
We employ the approach of stochastic dynamics to describe the dissemination of vector-borne diseases such as dengue, and we focus our attention on the characterization of the threshold of the epidemic. The coexistence space comprises two representative spatial structures for both human and mosquito populations. The human population has its evolution described by a process that is similar to the Susceptible-Infected-Recovered (SIR) dynamics. The population of mosquitoes follows a dynamic of the type of the Susceptible Infected-Susceptible (SIS) model. The coexistence space is a bipartite lattice constituted by two structures representing the human and mosquito populations. We develop a truncation scheme to solve the evolution equations for the densities and the two-site correlations from which we get the threshold of the disease and the reproductive ratio. We present a precise deØnition of the reproductive ratio which reveals the importance of the correlations developed in the early stage of the disease. According to our deØnition, the reproductive rate is directed related to the conditional probability of the occurrence of a susceptible human (mosquito) given the presence in the neighborhood of an infected mosquito (human). The threshold of the epidemic as well as the phase transition between the epidemic and the non-epidemic states are also obtained by performing Monte Carlo simulations. References: [1] David R. de Souza, T^ania Tom∂e, , Suani R. T. Pinho, Florisneide R. Barreto and M∂ario J. de Oliveira, Phys. Rev. E 87, 012709 (2013). [2] D. R. de Souza, T. Tom∂e and R. M. ZiÆ, J. Stat. Mech. P03006 (2011).
Resumo:
We developed a stochastic lattice model to describe the vector-borne disease (like yellow fever or dengue). The model is spatially structured and its dynamical rules take into account the diffusion of vectors. We consider a bipartite lattice, forming a sub-lattice of human and another occupied by mosquitoes. At each site of lattice we associate a stochastic variable that describes the occupation and the health state of a single individual (mosquito or human). The process of disease transmission in the human population follows a similar dynamic of the Susceptible-Infected-Recovered model (SIR), while the disease transmission in the mosquito population has an analogous dynamic of the Susceptible-Infected-Susceptible model (SIS) with mosquitos diffusion. The occurrence of an epidemic is directly related to the conditional probability of occurrence of infected mosquitoes (human) in the presence of susceptible human (mosquitoes) on neighborhood. The probability of diffusion of mosquitoes can facilitate the formation of pairs Susceptible-Infected enabling an increase in the size of the epidemic. Using an asynchronous dynamic update, we study the disease transmission in a population initially formed by susceptible individuals due to the introduction of a single mosquito (human) infected. We find that this model exhibits a continuous phase transition related to the existence or non-existence of an epidemic. By means of mean field approximations and Monte Carlo simulations we investigate the epidemic threshold and the phase diagram in terms of the diffusion probability and the infection probability.