2 resultados para Rossby wave

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study uses the global Ocean Topography Experiment (TOPEX)/Jason-1 altimeters` time series to estimate the 13-yr trend in sea surface height anomaly. These trends are estimated at each grid point by two methods: one fits a straight line to the time series and the other is based on the difference between the average height between the two halves of the time series. In both cases the trend shows large regional variability, mostly where the intense western boundary currents turn. The authors hypothesize that the regional variability of the sea surface height trends leads to changes in the local geostrophic transport. This in turn affects the instability-related processes that generate mesoscale eddies and enhances the Rossby wave signals. This hypothesis is verified by estimates of the trend of the amplitude of the filtered sea surface height anomaly that contains the spectral bands associated with Rossby waves and mesoscale eddies. The authors found predominantly positive tendency in the amplitude of Rossby waves and eddies, which suggests that, on average, these events are becoming more energetic. In some regions, the variation in amplitude over 13 yr is comparable to the standard deviation of the data and is statistically significant according to both methods employed in this study. It is plausible that in this case, the energy is transferred from the mean currents to the waves and eddies through barotropic and baroclinic instability processes that are more pronounced in the western boundary current extension regions. If these heat storage patterns and trends are confirmed on longer time series, then it will be justified to argue that the warming trend of the last century provides the energy that amplifies both Rossby waves and mesoscale eddies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Planetary waves are key to large-scale dynamical adjustment in the global ocean as they transfer energy from the east to the west side of oceanic basins; they connect the forcing in the ocean interior with the variability at its boundaries: and they change the local heat content, thus coupling oceanic, atmospheric, and biological processes. Planetary waves, mostly of the first baroclinic mode, are observed as distinctive patterns in global time series of sea surface height anomaly (SSHA) and heat storage. The goal of this study is to compare and validate large-scale SSHA signals from coupled ocean-atmosphere general circulation Model for Interdisciplinary Research on Climate (MIROC) with TOPEX/POSEIDON satellite altimeter observations. The last decade of the models` time series is selected for comparison with the altimeter data. The wave patterns are separated from the meso- and large-scale SSHA signals by digital filters calibrated to select the same spectral bands in both model and altimeter data. The band-wise comparison allows for an assessment of the model skill to simulate the dynamical components of the observed wave field. Comparisons regarding both the seasonal cycle and the Rossby wave Held differ significantly among basins. When carried within the same basin, differences can occur between equal latitudes in opposite hemispheres. Furthermore, at some latitudes the MIROC reproduces biannual, annual and semiannual planetary waves with phase speeds and average amplitudes similar to those observed by the altimeter, but with significant differences in phase. (C) 2008 Elsevier Ltd. All rights reserved.