3 resultados para Rising sea levesl

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean temperatures are rising throughout the world, making it necessary to evaluate the impact of these temperature changes on sea urchins, which are well-known bioindicators. This study evaluated the effect of an increase in temperature on the immune response of the subtidal Lytechinus variegatus and the intertidal Echinometra lucunter sea urchins. Both species were exposed to 20 (control), 25 and 30 °C temperatures for 24 h, 2, 7 and 14 days. Counting of coelomocytes and assays on the phagocytic response, adhesion and spreading of coelomocytes were performed. Red and colorless sphere cells were considered biomarkers for heat stress. Moreover, a significant decrease in the phagocytic indices and a decrease in both cell adhesion and cell spreading were observed at 25 and 30 °C for L. variegatus. For E. lucunter, the only alteration observed was for the cell proportions. This report shows how different species of sea urchins respond immunologically to rising temperatures

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sedimentological and benthic foraminifera analyses carried out on a core (length 4.15 in, collected at 22 degrees 56`31 `` S and 41 degrees 58`48 `` W, at a water depth of 43 in) sampled from the inner shelf of Cabo Frio, southeastern Brazilian continental margin, allowed identification of different hydrodynamic and productivity regimes related to sea-level fluctuations and/or climatic changes, during the last 9.4 ka cal BP. Prior to 7.0 ka cal BP, a less intense hydrodynamic and lower productivity regime occurred at lower sea levels and under drier climatic conditions. Between 7.0 and 5.0 ka cal BP, relatively stronger local oceanic circulation and relatively high productivity were observed, in a scenario of rising sea levels and more humid conditions. From 5.0 to 3.0 ka cal BP, bottom currents weakened and input of nutrients increased, with productivity levels similar to the previous phase at lower sea level and in a drier climate. From 3.0 ka cal BP up to the present, stronger hydrodynamic conditions and a higher productivity regime are linked to the establishment of the upwelling process in Cabo Frio. From 2.5 ka cal BP to the present, upwelling enhancement has been recognized, resulting from the combined action of NE winds and the intensification of the meandering pattern of the Brazil Current (BC). (C) 2008 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global warming is a reality and its effects have been widely studied. However, the consequences for marine invertebrates remain poorly understood. Thus, the present study proposed to evaluate the effect of elevated temperature on the innate immune system of Antarctic sea urchin Sterechinus neumayeri. Sea urchins were collected nearby Brazilian Antarctic Station "Comandante Ferraz" and exposed to 0 (control), 2 and 4A degrees C for periods of 48 h, 2, 7 and 14 days. After the experimental periods, coelomic fluid was collected in order to perform the following analyses: coelomocytes differential counting, phagocytic response, adhesion and spreading coelomocytes assay, intranuclear iron crystalloid and ultra structural analysis of coelomocytes. The red sphere cell was considered a biomarker for heat stress, as they increased in acute stress. Besides that, a significant increase in phagocytic indexes was observed at 2A degrees C coinciding with a significant increase of intranuclear iron crystalloid at the same temperature and same time period. Furthermore, significant alterations in cell adhesion and spreading were observed in elevated temperatures. The ultra structural analysis of coelomocytes showed no significant difference across treatments. This was the first time that innate immune response alterations were observed in response to elevated temperature in a Polar echinoid.