3 resultados para Riemann-Cauchy

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we introduce an asymmetric extension to the univariate slash-elliptical family of distributions studied in Gomez et al. (2007a). This new family results from a scale mixture between the epsilon-skew-symmetric family of distributions and the uniform distribution. A general expression is presented for the density with special cases such as the normal, Cauchy, Student-t, and Pearson type II distributions. Some special properties and moments are also investigated. Results of two real data sets applications are also reported, illustrating the fact that the family introduced can be useful in practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we discuss the existence of solutions for a class of abstract differential equations with nonlocal conditions for which the nonlocal term involves the temporal derivative of the solution. Some concrete applications to parabolic differential equations with nonlocal conditions are considered. (C) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144: 13-29, 2005). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144: 13-29, 2005), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green's theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well.