2 resultados para Rhoa

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rho GTPases are proteins that regulate cell cycle, shape, polarization, invasion, migration, and apoptosis, which are important characteristics of normal and neoplastic cells. Rho GTPases expression has been reported in normal tooth germ and several pathologies; however, it has not been evaluated in ameloblastomas. The aim of this study was to analyze the expression and distribution of RhoA, RhoB, Rac1, and Cdc42 Rho GTPases in solid and unicystic ameloblastomas. Three-micrometer sections from paraffin- embedded specimens were evaluated by using an avidin- biotin immunohistochemical method with antibodies against the proteins mentioned above. RhoA and RhoB staining was observed in a high number of cells (P < 0.05) and greater intensity in non-polarized ones. Rac1 was not observed, andCdc42 didnot showany statistical differences between the number of non-polarized and basal positive cells (P > 0.05). Upon comparing the studied ameloblastomas, a higher number of positive cells in the unicystic variant was observed than that in the solid one (P < 0,05). The results obtained suggest that theseGTPases could play a role in the ameloblastoma neoplastic epithelial cell phenotype determination (polarized or non-polarized), as well as in variant (solid or unicystic) and subtype (follicular or plexiform) determination. Furthermore, they could participate in solid ameloblastoma invasion mechanisms. J Oral Pathol Med (2012) 41: 400-407

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.