3 resultados para Reta tangente
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The physical aspects of the Subtropical Shelf Front (STSF) for the Southwest Atlantic Continental Shelf were previously described. However, only scarce data on the biology of the front is available in the literature. The main goal of this paper is to describe the physical, chemical and biological properties of the STSF found in winter 2003 and summer 2004. A cross-section was established at the historically determined location of the STSF. Nine stations were sampled in winter and seven in summer. Each section included a series of conductivity-temperature-depth (CTD) stations where water samples from selected depths were filtered for nutrient determination. Surface samples were taken for chlorophyll a (Chl-a) determination and plankton net tows carried out above and below the pycnocline. Results revealed that winter was marked by an inner-shelf salinity front and that the STSF was located on the mid-shelf The low salinity waters in the inner-shelf indicated a strong influence of freshwater, with high silicate (72 mu M), suspended matter (45 mg l(-1)), phosphate (2.70 mu M) and low nitrate (1.0 mu M) levels. Total dissolved nitrogen was relatively high (22.98 mu M), probably due to the elevated levels of organic compound contribution close to the continental margin. Surface Chl-a concentration decreased from coastal well-mixed waters, where values up to 8.0 mg m(-3) were registered, to offshore waters. Towards the open ocean, high subsurface nutrients values were observed, probably associated to South Atlantic Central Waters (SACW). Zooplankton and ichthyoplankton abundance followed the same trend; three different groups associated to the inner-, mid- and outer-shelf region were identified. During summer, diluted waters extended over the shelf to join the STSF in the upper layer; the concentration of inorganic nutrients decreased in shallow waters; however, high values were observed between 40 and 60 m and in deep offshore waters. Surface Chl-a ranged 0.07-1.5 mg m(-3); winter levels were higher. Three groups of zoo and ichthyoplankton, separated by the STSF, were also identified. Results of the study performed suggest that the influence of freshwater was stronger during winter and that abundance distribution of Chl-a, copepods and ichthyoplankton was related to the Plata Plume Waters (PPW), rather than to the presence of the STSF. During summer, when the presence of freshwater decreases, plankton interactions seem to take place in the STSF. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The main clinical manifestations of the spinocerebellar ataxias (SCAs) result from the involvement of the cerebellum and its connections. Cerebellar activity has been consistently observed in functional imaging studies of olfaction, but the anatomical pathways responsible for this connection have not yet been elucidated. Previous studies have demonstrated olfactory deficit in SCA2, Friedreich's ataxia and in small groups of ataxia of diverse aetiology. The authors used a validated version of the 16-item smell identification test from Sniffin' Sticks (SS-16) was used to evaluate 37 patients with genetically determined autosomal dominant ataxia, and 31 with familial ataxia of unknown genetic basis. This data was also compared with results in 106 Parkinson's disease patients and 218 healthy controls. The SS-16 score was significantly lower in ataxia than in the control group (p<0.001, 95% CI for beta=0.55 to 1.90) and significantly higher in ataxia than in Parkinson's disease (p<0.001, 95% CI for beta=-4.58 to -3.00) when adjusted for age (p=0.001, 95% CI for beta=-0.05 to -0.01), gender (p=0.19) and history of tobacco use (p=0.41). When adjusted for general cognitive function, no significant difference was found between the ataxia and control groups. This study confirms previous findings of mild hyposmia in ataxia, and further suggests this may be due to general cognitive deficits rather than specific olfactory problems.
Resumo:
Este artigo foi escrito para mostrar aos alunos de graduação em Física e Engenharia como estimar as correntes de Foucault. Inicialmente fazemos uma breve análise das condições de contorno entre dois meios com diferentes parâmetros ε, μ e σ, que devem ser obedecidas tanto por campos eletromagnéticos estáticos quanto dependentes do tempo. Em seguida, usando as equações de Maxwell calculamos as “correntes de Foucault”, ou “eddy currents”, que surgem em um condutor plano metálico (paramagnético ou diamagnético) quando sobre ele é aplicado um campo magnético B(t) variável no tempo, gerado por um solenoide longo de seção reta circular.