9 resultados para Restricted three-body problem

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binary stars are frequent in the universe, with about 50% of the known main sequence stars being located at a multiple star system (Abt, 1979). Even though, they are universally thought as second rate sites for the location of exo-planets and the habitable zone, due to the difficulties of detection and high perturbation that could prevent planet formation and long term stability. In this work we show that planets in binary star systems can have regular orbits and remain on the habitable zone. We introduce a stability criterium based on the solution of the restricted three body problem and apply it to describe the short period planar and three-dimentional stability zones of S-type orbits around each star of the Alpha Centauri system. We develop as well a semi-analytical secular model to study the long term dynamics of fictional planets in the habitable zone of those stars and we verify that planets on the habitable zone would be in regular orbits with any eccentricity and with inclination to the binary orbital plane up until 35 degrees. We show as well that the short period oscillations on the semi-major axis is 100 times greater than the Earth's, but at all the time the planet would still be found inside the Habitable zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neutron-rich lead isotopes, up to Pb-216, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond Pb-208.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When compared to our Solar System, many exoplanet systems exhibit quite unusual planet configurations; some of these are hot Jupiters, which orbit their central stars with periods of a few days, others are resonant systems composed of two or more planets with commensurable orbital periods. It has been suggested that these configurations can be the result of a migration processes originated by tidal interactions of the planets with disks and central stars. The process known as planet migration occurs due to dissipative forces which affect the planetary semi-major axes and cause the planets to move towards to, or away from, the central star. In this talk, we present possible signatures of planet migration in the distribution of the hot Jupiters and resonant exoplanet pairs. For this task, we develop a semi-analytical model to describe the evolution of the migrating planetary pair, based on the fundamental concepts of conservative and dissipative dynamics of the three-body problem. Our approach is based on an analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces needs to be invoked. We show that, under assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the stationary solutions of the conservative problem (Birkhoff, Dynamical systems, 1966). The ultimate convergence and the evolution of the system along one of these modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the roper frequencies of the system. We show that it is possible to reassemble the starting configurations and migration history of the systems on the basis of their final states, and consequently to constrain the parameters of the physical processes involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of the discovered exoplanetary systems are involved inside mean-motion resonances. In this work we focus on the dynamics of the 3:1 mean-motion resonant planetary systems. Our main purpose is to understand the dynamics in the vicinity of the apsidal corotation resonance (ACR) which are stationary solutions of the resonant problem. We apply the semi-analytical method (Michtchenko et al., 2006) to construct the averaged three-body Hamiltonian of a planetary system near a 3:1 resonance. Then we obtain the families of ACR, composed of symmetric and asymmetric solutions. Using the symmetric stable solutions we observe the law of structures (Ferraz-Mello,1988), for different mass ratio of the planets. We also study the evolution of the frequencies of σ1, resonant angle, and Δω, the secular angle. The resonant domains outside the immediate vicinity of ACR are studied using dynamical maps techniques. We compared the results obtained to planetary systems near a 3:1 MMR, namely 55 Cnc b-c, HD 60532 b-c and Kepler 20 b-c.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report the construction of potential energy surfaces for the (3)A '' and (3)A' states of the system O(P-3) + HBr. These surfaces are based on extensive ab initio calculations employing the MRCI+Q/CBS+SO level of theory. The complete basis set energies were estimated from extrapolation of MRCI+Q/aug-cc-VnZ(-PP) (n = Q, 5) results and corrections due to spin-orbit effects obtained at the CASSCF/aug-cc-pVTZ(-PP) level of theory. These energies, calculated over a region of the configuration space relevant to the study of the reaction O(P-3) + HBr -> OH + Br, were used to generate functions based on the many-body expansion. The three-body potentials were interpolated using the reproducing kernel Hilbert space method. The resulting surface for the (3)A '' electronic state contains van der Waals minima on the entrance and exit channels and a transition state 6.55 kcal/mol higher than the reactants. This barrier height was then scaled to reproduce the value of 5.01 kcal/mol, which was estimated from coupled cluster benchmark calculations performed to include high-order and core-valence correlation, as well as scalar relativistic effects. The (3)A' surface was also scaled, based on the fact that in the collinear saddle point geometry these two electronic states are degenerate. The vibrationally adiabatic barrier heights are 3.44 kcal/mol for the (3)A '' and 4.16 kcal/mol for the (3)A' state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705428]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have done a new analysis of the available observations of the GJ581 exoplanetary system. Today this system is controversial due to choices that can be done in the orbital determination. The main ones are the occurrence of aliases and the additional bodies-the planets f and g-announced in Vogt et al. (Astrophys J 723:954-965, 2010). Any dynamical study of exoplanets requires the good knowledge of the orbital elements and the investigations involving the planet g are particularly interesting, since this body would lie in the habitable zone (HZ) of the star GJ581. This region, for this system, is very attractive of the dynamical point of view due to several resonances of two and three bodies present there. In this work, we investigate the conditions under which the planet g may exist. We stress the fact that the planet g is intimately related with the orbital elements of the planet d; more precisely, we conclude that it is not possible to disconnect its existence from the determination of the eccentricity of the planet d. Concerning the planet f, we have found one solution with period a parts per thousand 450 days, but we are judicious about any affirmation concerning this body because its signal is in the threshold of detection and the high period is in a spectral region where the occurrence of aliases is very common. Besides, we outline some dynamical features of the HZ with the dynamical map and point out the role played by some resonances laying there.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the possibility of observing a loosely bound molecular state in a three-body hadronic B decay. In particular, we use the QCD sum rule approach to study eta' - pi molecular current. We consider an isovector-scalar I(G)J(PC) = 1(-)0(++) molecular current, and we use two- and three-point functions to study the mass and decay width of such a state. We consider the contributions of condensates up to dimension six, and we work at leading order in alpha(s). We obtain a mass around 1.1 GeV, consistent with a loosely bound state, and eta' - pi -> K+K- decay width around 10 MeV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

20 years after the discovery of the first planets outside our solar system, the current exoplanetary population includes more than 700 confirmed planets around main sequence stars. Approximately 50% belong to multiple-planet systems in very diverse dynamical configurations, from two-planet hierarchical systems to multiple resonances that could only have been attained as the consequence of a smooth large-scale orbital migration. The first part of this paper reviews the main detection techniques employed for the detection and orbital characterization of multiple-planet systems, from the (now) classical radial velocity (RV) method to the use of transit time variations (TTV) for the identification of additional planetary bodies orbiting the same star. In the second part we discuss the dynamical evolution of multi-planet systems due to their mutual gravitational interactions. We analyze possible modes of motion for hierarchical, secular or resonant configurations, and what stability criteria can be defined in each case. In some cases, the dynamics can be well approximated by simple analytical expressions for the Hamiltonian function, while other configurations can only be studied with semi-analytical or numerical tools. In particular, we show how mean-motion resonances can generate complex structures in the phase space where different libration islands and circulation domains are separated by chaotic layers. In all cases we use real exoplanetary systems as working examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coccidiosis of the domestic fowl is a worldwide disease caused by seven species of protozoan parasites of the genus Eimeria. The genome of the model species, Eimeria tenella, presents a complexity of 55-60 MB distributed in 14 chromosomes. Relatively few studies have been undertaken to unravel the complexity of the transcriptome of Eimeria parasites. We report here the generation of more than 45,000 open reading frame expressed sequence tag (ORESTES) cDNA reads of E. tenella, Eimeria maxima and Eimeria acervulina, covering several developmental stages: unsporulated oocysts, sporoblastic oocysts, sporulated oocysts, sporozoites and second generation merozoites. All reads were assembled to constitute gene indices and submitted to a comprehensive functional annotation pipeline. In the case of E. tenella, we also incorporated publicly available ESTs to generate an integrated body of information. Orthology analyses have identified genes conserved across different apicomplexan parasites, as well as genes restricted to the genus Eimeria. Digital expression profiles obtained from ORESTES/EST countings, submitted to clustering analyses, revealed a high conservation pattern across the three Eimeria spp. Distance trees showed that unsporulated and sporoblastic oocysts constitute a distinct clade in all species, with sporulated oocysts forming a more external branch. This latter stage also shows a close relationship with sporozoites, whereas first and second generation merozoites are more closely related to each other than to sporozoites. The profiles were unambiguously associated with the distinct developmental stages and strongly correlated with the order of the stages in the parasite life cycle. Finally, we present The Eimeria Transcript Database (http://www.coccidia.icb.usp.br/eimeriatdb), a website that provides open access to all sequencing data, annotation and comparative analysis. We expect this repository to represent a useful resource to the Eimeria scientific community, helping to define potential candidates for the development of new strategies to control coccidiosis of the domestic fowl. (C) 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.