2 resultados para Resistance strategies
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this work we present an agent-based model for the spread of tuberculosis where the individuals can be infected with either drug-susceptible or drug-resistant strains and can also receive a treatment. The dynamics of the model and the role of each one of the parameters are explained. The whole set of parameters is explored to check their importance in the numerical simulation results. The model captures the beneficial impact of the adequate treatment on the prevalence of tuberculosis. Nevertheless, depending on the treatment parameters range, it also captures the emergence of drug resistance. Drug resistance emergence is particularly likely to occur for parameter values corresponding to less efficacious treatment, as usually found in developing countries.
Resumo:
Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT) is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL) offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods.