6 resultados para Research Subject Categories::TECHNOLOGY::Civil engineering and architecture::Other civil engineering and architecture

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common subject in bone tissue engineering is the need for porous scaffolds to support cell and tissue interactions aiming at repairing bone tissue. As poly(lactide-co-glycolide)calcium phosphate (PLGACaP) scaffolds can be manufactured with different pore sizes, the aim of this study was to evaluate the effect of pore diameter on osteoblastic cell responses and bone tissue formation. Scaffolds were prepared with 85% porosity, with pore diameters in the ranges 470590, 590850 and 8501200 mu m. Rat bone marrow stem cells differentiated into osteoblasts were cultured on the scaffolds for up to 10 days to evaluate cell growth, alkaline phosphatase (ALP) activity and the gene expression of the osteoblast markers RUNX2, OSX, COL, MSX2, ALP, OC and BSP by real-time PCR. Scaffolds were implanted in critical size rat calvarial defects for 2, 4, and 8 weeks for histomorphometric analysis. Cell growth and ALP activity were not affected by the pore size; however, there was an increase in the gene expression of osteoblastic markers with the increase in the pore sizes. At 2 weeks all scaffolds displayed a similar amount of bone and blood vessels formation. At 4 and 8 weeks much more bone formation and an increased number of blood vessels were observed in scaffolds with pores of 470590 mu m. These results show that PLGACaP is a promising biomaterial for bone engineering. However, ideally, combinations of larger (similar to 1000 mu m) and smaller (similar to 500 mu m) pores in a single scaffold would optimize cellular and tissue responses during bone healing. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on literature, this article aims to present the "participant-observation" research protocol, and its practical application in the industrial engineering field, more specifically within the area of design development, and in the case shown by this article, of interiors' design. The main target is to identify the concept of the method, i.e., from its characteristics to structure a general sense about the subject, so that the protocol can be used in different areas of knowledge, especially those ones which are committed with the scientific research involving the expertise from researchers, and subjective feelings and opinions of the users of an engineering product, and how this knowledge can be benefic for product design, contributing since the earliest stage of design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that control systems are the core of electronic differential systems (EDSs) in electric vehicles (EVs)/hybrid HEVs (HEVs). However, conventional closed-loop control architectures do not completely match the needed ability to reject noises/disturbances, especially regarding the input acceleration signal incoming from the driver's commands, which makes the EDS (in this case) ineffective. Due to this, in this paper, a novel EDS control architecture is proposed to offer a new approach for the traction system that can be used with a great variety of controllers (e. g., classic, artificial intelligence (AI)-based, and modern/robust theory). In addition to this, a modified proportional-integral derivative (PID) controller, an AI-based neuro-fuzzy controller, and a robust optimal H-infinity controller were designed and evaluated to observe and evaluate the versatility of the novel architecture. Kinematic and dynamic models of the vehicle are briefly introduced. Then, simulated and experimental results were presented and discussed. A Hybrid Electric Vehicle in Low Scale (HELVIS)-Sim simulation environment was employed to the preliminary analysis of the proposed EDS architecture. Later, the EDS itself was embedded in a dSpace 1103 high-performance interface board so that real-time control of the rear wheels of the HELVIS platform was successfully achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research deals with the behaviour of grouted dowels used in beam-to-column connections in precast concrete structures. The research focuses primarily on the theoretical and experimental analysis of the resistance mechanism of the dowels. The experimental programme included 15 models for analysing the following variations in dowel parameters: a) dowel diameters of 16, 20 and 25 mm, b) dowel inclinations of 0 degrees (i.e. perpendicular to the interface), 45 degrees and 60 degrees, c) compressive strength of classes C35 and C50 for the concrete adjacent to the dowels, and d) the absence or presence of compressive loads normal to the interface. The experimental results indicate that the ultimate capacity and shear stiffness of the inclined dowels are significantly higher than those of the perpendicular dowels. Based on these results, an analytical model is proposed that considers the influence of the parameters studied regarding the capacity of the dowel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to investigate the effects of pectinase enzyme treatment of acai pulp on cross-flow microfiltration (CFMF) performance and on phytochemical and functional characteristics of their compounds. Analyses of fouling mechanisms were carried out through resistance in series and blocking in law models. The enzymatic treatment was conducted using Ultrazym(R) AFPL (Novozymes A/S) at 500 mg kg(-1) of acai pulp for 30 min at 35 degrees C. Before microfiltrations, untreated and enzyme-treated acai pulps were previously diluted in distilled water (1:3; w/v). CFMFs were conducted using commercial alpha-alumina (alpha-Al2O3) ceramic membranes (Andritz AG, Austria) of 0.2 mu m and 0.8 mu m pore sizes, and 0.0047 m(2) of filtration area. The microfiltration unit was operated in batch mode for 120 min at 25 degrees C and the fluid-dynamic conditions were transmembrane pressure of Delta P = 100 kPa and cross-flow velocity of 3 m s(-1) in turbulent flow. The highest values of permeate flux and accumulated permeate volume were obtained using enzyme-treated pulp and 0.2 mu m pore size membranes with steady flux values exceeding 100 L h(-1) m(-2). For the 0.8 mu m pore size membrane, the estimated total resistance after the microfiltration of enzyme-treated acai pulp was 21% lower than the untreated pulp, and for the 0.2 mu m pore size membrane, it was 18%. Cake filtration was the dominant mechanism in the early stages of most of the CFMF processes. After approximately 20 min, however, intermediate pore blocking and complete pore blocking contributed to the overall fouling mechanisms. The reduction of the antioxidant capacity of the permeates obtained after microfiltration of the enzyme-treated pulp was higher (p < 0.01) than that obtained using untreated pulp. For total polyphenols, on the contrary, the permeates obtained after microfiltration of the enzyme-treated pulp showed a lower mean reduction (p < 0.01) than those from the untreated pulp. The results show that the enzymatic treatment had a positive effect on the CFMF process of acai pulp. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aims to analyze the IT architecture management practices associated with their degree of maturity and the influence of institutional and strategic factors on the decisions involved through a case study in a large telecom organization. The case study allowed us to identify practices that led the company to its current stage of maturity and identify practices that can lead the company to the next stage. The strategic influence was mentioned by most respondents and the institutional influence was present in decisions related to innovation and those dealing with a higher level of uncertainties.