2 resultados para Repetition frequency

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To refine methods of electroretinographical (ERG) recording for the analysis of low retinal potentials under scotopic conditions in advanced retinal degenerative diseases. Standard Ganzfeld ERG equipment (Diagnosys LLC, Cambridge, UK) was used in 27 healthy volunteers (mean age 28 +/- A SD 8.5 years) to define the stimulation protocol. The protocol was then applied in clinical routine and 992 recordings were obtained from patients (mean age 40.6 +/- A 18.3 years) over a period of 5 years. A blue stimulus with a flicker frequency of 9 Hz was specified under scotopic conditions to preferentially record rod-driven responses. A range of stimulus strengths (0.0000012-6.32 scot. cd s/mA(2) and 6-14 ms flash duration) was tested for maximal amplitudes and interference between rods and cones. Analysis of results was done by standard Fourier Transformation and assessment of signal-to-noise ratio. Optimized stimulus parameters were found to be a time-integrated luminance of 0.012 scot. cd s/mA(2) using a blue (470 nm) flash of 10 ms duration at a repetition frequency of 9 Hz. Characteristic stimulus strength versus amplitude curves and tests with stimuli of red or green wavelength suggest a predominant rod-system response. The 9 Hz response was found statistically distinguishable from noise in 38% of patients with otherwise non-recordable rod responses according to International Society for Clinical Electrophysiology of Vision standards. Thus, we believe this protocol can be used to record ERG potentials in patients with advanced retinal diseases and in the evaluation of potential treatments for these patients. The ease of implementation in clinical routine and of statistical evaluation providing an observer-independent evaluation may further facilitate its employment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study is to investigate cardiac bioeffects resulting from ultrasonic stimulation using a specific set of acoustical parameters. Ten Sprague-Dawley rats were anesthetized and exposed to 1-MHz ultrasound pulses of 3-MPa peak rarefactional pressure and approximately 1% duty factor. The pulse repetition frequency started slightly above the heart rate and was decreased by 1 Hz every 10 s, for a total exposure duration of 30 s. The control group was composed of five rats. Two-way analysis of variance for repeated measures and Bonferroni post hoc tests were used to compare heart rate and ejection fraction, which was used as an index of myocardial contractility. It was demonstrated for the first time that transthoracic ultrasound has the potential to decrease the heart rate by similar to 20%. The negative chronotropic effect lasted for at least 15 min after ultrasound exposure and there was no apparent gross damage to the cardiac tissue.