2 resultados para Renewable diesels

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the biopolymer poly-(3-hydroxybutyrate), P[3HB], presents physicochemical properties that make it an alternative material to conventional plastics, its biotechnological production is quite expensive. As carbon substrates contribute greatly to P[3HB] production cost, the utilization of a cheaper carbon substrate and less demanding micro-organisms should decrease its cost. In the present study a 23 factorial experimental design was applied, aiming to evaluate the effects of using hydrolysed corn starch (HCS) and soybean oil (SBO) as carbon substrates, and cheese whey (CW) supplementation in the mineral medium (MM) on the responses, cell dried weigh (DCW), percentage P[3HB] and mass P[3HB] by recombinant Escherichia coli strains JM101 and DH10B, containing the P[3HB] synthase genes from Cupriavidus necator (ex-Ralstonia eutropha). The analysis of effects indicated that the substrates and the supplement and their interactions had positive effect on CDW. Statistically generated equations showed that, at the highest concentrations of HCS, SO and CW, theoretically it should be possible to produce about 2 g L(1) DCW, accumulating 50% P[3HB], in both strains. To complement this study, the strain that presented the best results was cultivated in MM added to HCS, SBO and CW ( in best composition observed) and complex medium (CM) to compare the obtained P[3HB] in terms of physicochemical parameters. The obtained results showed that the P[3HB] production in MM (1.29 g L(-1)) was approximately 20% lower than in CM (1.63 g L(-1)); however, this difference can be compensated by the lower cost of the MM achieved by the use of cheap renewable carbon sources. Moreover, using differential scanning calorimetry and thermogravimetry analyses, it was observed that the polymer produced in MM was the one which presented physicochemical properties (Tg and Tf) that were more similar to those found in the literature for P[3HB].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monomers based on plant oil derivatives bearing furan heterocycles appended through thiol-ene click chemistry were prepared and, subsequently, polymerized via a second type of click reaction, i. e. the Diels-Alder (DA) polycondensation between furan and maleimide complementary moieties. Two basic approaches were considered for these DA polymerizations, namely (i) the use of monomers with two terminal furan rings in conjunction with bismaleimides (AA + BB systems) and (ii) the use of a protected AB monomer incorporating both furan and maleimide end groups. This study clearly showed that both strategies were successful, albeit with different outcomes, in terms of the nature of the ensuing products. The application of the retro-DA reaction to these polymers confirmed their thermoreversible character, i. e. the clean-cut return to their respective starting monomers, opening the way to original macromolecular materials with interesting applications, like mendability and recyclability.