7 resultados para Reliability in refrigeration systems
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In fluids and plasmas with zonal flow reversed shear, a peculiar kind of transport barrier appears in the shearless region, one that is associated with a proper route of transition to chaos. These barriers have been identified in symplectic nontwist maps that model such zonal flows. We use the so-called standard nontwist map, a paradigmatic example of nontwist systems, to analyze the parameter dependence of the transport through a broken shearless barrier. On varying a proper control parameter, we identify the onset of structures with high stickiness that give rise to an effective barrier near the broken shearless curve. Moreover, we show how these stickiness structures, and the concomitant transport reduction in the shearless region, are determined by a homoclinic tangle of the remaining dominant twin island chains. We use the finite-time rotation number, a recently proposed diagnostic, to identify transport barriers that separate different regions of stickiness. The identified barriers are comparable to those obtained by using finite-time Lyapunov exponents.
Resumo:
Background and Study Aim: The grip strength endurance is important for Brazilian Jiu-Jitsu (BJJ). Thus, the aims of this study were: a) to test the reliability of two kimono grip strength tests named maximum static lift (MSL) and maximum number of repetitions (MNR) and b) to examine differences between elite and non-elite BJJ players in these tests. Material/Methods: Thirty BJJ players participated into two phases: "A" to test reliability and "B" to compare elite and non-elite. In phase A, twenty participants performed the MSL and, 15 min later, the MNR in two occasions with 24-h interval. In phase B, ten other BJJ practitioners (non-elite) and ten athletes (elite) performed the same tests. The intraclass correlation coefficient (ICC) two way fixed model (3,1), Bland-Altman plot and the limits of agreement were used to test reliability, correlation between the tests were evaluated by Pearson correlations and independent T test (P<0.05) was utilized to compare elite vs. non-elite. Results: The ICC was high for repeated measurements on different days of phase A (MSL: r=0.99 and MNR: r=0.97). Limits of agreement for time of suspension were -6.9 to 2.4-s, with a mean difference of -2.3 s (CI: -3.3 to -1.2-s), while for number of repetitions the limits of agreement were -2.9 to 2.3-rep, with a mean difference of -0.3-rep (CI: -0.9 to 0.3-rep). In phase B, elite presented better performance for both tests (P<0.05) compared to non-elite (56 +/- 10-s vs. 37 +/- 11-s in MSL and 15 +/- 4-rep vs. 8 +/- 3-rep in MNR). Moderate correlation were found between MSL and MNR for absolute values during test (r=0.475; p=0.034), and retest phases (r=0.489; p=0.029), while moderate and high correlations in the test (r=0.615; p=0.004) and retest phases (r=0.716; p=0.001) were found for relative values, respectively. Conclusions: These proposed tests are reliable and both static and dynamic grip strength endurance tests seem to differentiate BJJ athletes from different levels.
Resumo:
We present a stochastic approach to nonequilibrium thermodynamics based on the expression of the entropy production rate advanced by Schnakenberg for systems described by a master equation. From the microscopic Schnakenberg expression we get the macroscopic bilinear form for the entropy production rate in terms of fluxes and forces. This is performed by placing the system in contact with two reservoirs with distinct sets of thermodynamic fields and by assuming an appropriate form for the transition rate. The approach is applied to an interacting lattice gas model in contact with two heat and particle reservoirs. On a square lattice, a continuous symmetry breaking phase transition takes place such that at the nonequilibrium ordered phase a heat flow sets in even when the temperatures of the reservoirs are the same. The entropy production rate is found to have a singularity at the critical point of the linear-logarithm type.
The role of empirical research in the study of complex forms of governance in agroindustrial systems
Resumo:
The growing complexity of supply chains poses new challenges for Agricultural Research Centers and statistical agencies. The aim of this perspective paper is to discuss the role of empirical research in understanding the complex forms of governance in agribusiness. The authors argue that there are three fundamental levels of analysis: (i) the basic structure of the market, (ii) the formal contractual arrangements that govern relations within the agroindustrial system and (iii) the transactional dimensions governed by non-contractual means. The case of the agrochemical industry in Brazil illustrates how traditional analyses that only address market structure are insufficient to fully explain the agricultural sector and its supply chain. The article concludes by suggesting some indicators which could be collected by statistical agencies to improve understanding of the complex relationships among agribusiness segments. In doing so, the paper seeks to minimize costs and to enable a better formulation of public and private policies.
Resumo:
In the past few decades detailed observations of radio and X-ray emission from massive binary systems revealed a whole new physics present in such systems. Both thermal and non-thermal components of this emission indicate that most of the radiation at these bands originates in shocks. O and B-type stars and WolfRayet (WR) stars present supersonic and massive winds that, when colliding, emit largely due to the freefree radiation. The non-thermal radio and X-ray emissions are due to synchrotron and inverse Compton processes, respectively. In this case, magnetic fields are expected to play an important role in the emission distribution. In the past few years the modelling of the freefree and synchrotron emissions from massive binary systems have been based on purely hydrodynamical simulations, and ad hoc assumptions regarding the distribution of magnetic energy and the field geometry. In this work we provide the first full magnetohydrodynamic numerical simulations of windwind collision in massive binary systems. We study the freefree emission characterizing its dependence on the stellar and orbital parameters. We also study self-consistently the evolution of the magnetic field at the shock region, obtaining also the synchrotron energy distribution integrated along different lines of sight. We show that the magnetic field in the shocks is larger than that obtained when the proportionality between B and the plasma density is assumed. Also, we show that the role of the synchrotron emission relative to the total radio emission has been underestimated.
Resumo:
Socioecological models assume that primates adapt their social behavior to ecological conditions, and predict that food availability and distribution, predation risk and risk of infanticide by males affect patterns of social organization, social structure and mating system of primates. However, adaptability and variation of social behavior may be constrained by conservative adaptations and by phylogenetic inertia. The comparative study of closely related species can help to identify the relative contribution of ecological and of genetic determinants to primate social systems. We compared ecological features and social behavior of two species of the genus Sapajus, S. nigritus in Carlos Botelho State Park, an area of Atlantic Forest in Sao Paulo state, and S. libidinosus in Fazenda Boa Vista, a semi-arid habitat in Piaui state, Brazil. S. libidinosus perceived higher predation risk and fed on clumped, high quality, and usurpable resources (fruits) all year round, whereas S. nigritus perceived lower predation risk and relied on evenly distributed, low-quality food sources (leaves) during periods of fruit shortage. As predicted by socioecology models, S. libidinosus females were philopatric and established linear and stable dominance hierarchies, coalitions, and grooming relationships. S. nigritus females competed less often, and could transfer between groups, which might explain the lack of coalitions and grooming bonds among them. Both populations presented similar group size and composition and the same polygynous mating system. The species differed from each other in accordance with differences in the characteristics of their main food sources, as predicted by socioecological models, suggesting that phylogenetic inertia does not constrain social relationships established among female Sapajus. The similarity in mating systems indicates that this element of the social system is not affected by ecological variables and thus, is a more conservative behavioral feature of the genus Sapajus. Am. J. Primatol. 74:315331, 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Network reconfiguration for service restoration (SR) in distribution systems is a complex optimization problem. For large-scale distribution systems, it is computationally hard to find adequate SR plans in real time since the problem is combinatorial and non-linear, involving several constraints and objectives. Two Multi-Objective Evolutionary Algorithms that use Node-Depth Encoding (NDE) have proved able to efficiently generate adequate SR plans for large distribution systems: (i) one of them is the hybridization of the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) with NDE, named NSGA-N; (ii) the other is a Multi-Objective Evolutionary Algorithm based on subpopulation tables that uses NDE, named MEAN. Further challenges are faced now, i.e. the design of SR plans for larger systems as good as those for relatively smaller ones and for multiple faults as good as those for one fault (single fault). In order to tackle both challenges, this paper proposes a method that results from the combination of NSGA-N, MEAN and a new heuristic. Such a heuristic focuses on the application of NDE operators to alarming network zones according to technical constraints. The method generates similar quality SR plans in distribution systems of significantly different sizes (from 3860 to 30,880 buses). Moreover, the number of switching operations required to implement the SR plans generated by the proposed method increases in a moderate way with the number of faults.