5 resultados para Relationship intensity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Citrus Variegated Chlorosis (CVC) is currently present in approximately 40% of citrus plants in Brazil and causes an annual loss of around 120 million US dollars to the Brazilian citrus industry. Despite the fact that CVC has been present in Brazil for over 20 years, a relationship between disease intensity and yield loss has not been established. In order to achieve this, an experiment was carried out in a randomized block design in a 3 x 2 factorial scheme with 10-year-old Natal sweet orange. The following treatments were applied: irrigation with 0, 50 or 100% of the evapotranspiration of the crop, combined with natural infection or artificial inoculation with Xylella fastidiosa, the causal agent of CVC. The experiment was evaluated during three seasons. A negative exponential model was fitted to the relationships between yield versus CVC severity and yield versus Area Under Disease Progress Curve (AUDPC). In addition, the relationship between yield versus CVC severity and canopy volume was fitted by a multivariate exponential model. The use of the AUDPC variable showed practical limitations when compared with the variable CVC severity. The parameter values in the relationship of yieldCVC severity were similar for all treatments unlike in the multivariate model. Consequently, the yieldCVC intensity relationship (with 432 data points) could be described by one single model: y = 114.07 exp(-0.017 x), where y is yield (symptomless fruit weight in kg) and x is disease severity (R2 = 0.45; P < 0.01).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim. The purpose of the study was to investigate the relationship between the total volume of load lifted (TVLL) and the rating of perceived exertion (RPE) measures during different resistance training (RT) schemes using the bench press exercise. Methods. The present study was divided into two experiments. In the first experiment, 18 healthy men performed three different RT schemes: a strength oriented scheme (SS), a muscular endurance oriented scheme (ES) and a hypertrophy oriented scheme (HS). TVLL was calculated for each scheme. Mean-RPE and session-RPE were assessed. In the second experiment, 23 men performed two resistance exercise bouts at different intensities (50 %-1RM and 75%-1RM) with matched TVLL. Mean-RPE and session-RPE were also assessed. Results. SS and HS showed higher TVLL and greater RPE scores as compared to ES (P<0.05). No significant difference was observed between SS and HS. It was verified significant positive correlations between TVLL and session-RPE (SS r=0.63, HS r=0.64, ES r=0.56; P<0.05), and between mean-RPE and TVLL (SS r=0.55, HS r=0.52, ES r=0.47; P<0.05) for all schemes. No differences were observed for mean-RPE, session-RPE and TVLL between the 50%-1RM and 75%1RM. Significant positive relationships between TVLL and session-RPE (50 %-1RM r=0.61, 75 %-1RM r=0.66; p<0.05) and between TVLL and mean-RPE (50 %-1RM r=0.51, 75%1RM r=0.49; P<0.05) were observed. Conclusion. The results of this study have shown that the TVLL in RT influences RPE measures. These findings corroborates the existence of a relationship between total work performed (external training load) and perception of effort (internal training load).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in Sao Carlos (Fazenda Canchim), in Sao Paulo State, Brazil. Experimental plots of 33 m(2) were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e. g., soil type, declivity, slope length, among others not analyzed in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exploration of novel synthetic methodologies that control both size and shape of functional nanostructure opens new avenues for the functional application of nanomaterials. Here, we report a new and versatile approach to synthesize SnO2 nanocrystals (rutile-type structure) using microwave-assisted hydrothermal method. Broad peaks in the X-ray diffraction spectra indicate the nanosized nature of the samples which were indexed as a pure cassiterite tetragonal phase. Chemically and physically adsorbed water was estimated by TGA data and FT-Raman spectra to account for a new broad peak around 560 cm(-1) which is related to defective surface modes. In addition, the spherical-like morphology and low dispersed distribution size around 3-5 nm were investigated by HR-TEM and FE-SEM microscopies. Room temperature PL emission presents two broad bands at 438 and 764 nm, indicating the existence of different recombination centers. When the size of the nanospheres decreases, the relative intensity of 513 nm emission increases and the 393 nm one decreases. UV-Visible spectra show substantial changes in the optical absorbance of crystalline SnO2 nanoparticles while the existence of a small tail points out the presence of localized levels inside the forbidden band gap and supplies the necessary condition for the PL emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.