3 resultados para Relational sociology
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Shared attention is a type of communication very important among human beings. It is sometimes reserved for the more complex form of communication being constituted by a sequence of four steps: mutual gaze, gaze following, imperative pointing and declarative pointing. Some approaches have been proposed in Human-Robot Interaction area to solve part of shared attention process, that is, the most of works proposed try to solve the first two steps. Models based on temporal difference, neural networks, probabilistic and reinforcement learning are methods used in several works. In this article, we are presenting a robotic architecture that provides a robot or agent, the capacity of learning mutual gaze, gaze following and declarative pointing using a robotic head interacting with a caregiver. Three learning methods have been incorporated to this architecture and a comparison of their performance has been done to find the most adequate to be used in real experiment. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human in a controlled environment. The experimental results show that the robotic head is able to produce appropriate behavior and to learn from sociable interaction.
Resumo:
The associations between segregation and urban poverty have been intensely scrutinized by the sociology and urban studies literatures. More recently, several studies have emphasized the importance of social networks for living conditions. Yet relatively few studies have tested the precise effects of social networks, and fewer still have focused on the joint effects of residential segregation and social networks on living conditions. This article explores the associations between networks, segregation and some of the most important dimensions of access to goods and services obtained in markets: escaping from social precariousness and obtaining monetary income. It is based on a study of the personal networks of 209 individuals living in situations of poverty in seven locales in the metropolitan area of Sao Paulo. Using network analysis and multivariate techniques, I show that relational settings strongly influence the access individuals have to markets, leading some individuals into worse living conditions and poverty. At the same time, although segregation plays an important role in poverty, its effects tend to be mediated by the networks in which individuals are embedded. Networks in this sense may enhance or mitigate the effects of isolation produced by space.
Resumo:
Abstract Background Once multi-relational approach has emerged as an alternative for analyzing structured data such as relational databases, since they allow applying data mining in multiple tables directly, thus avoiding expensive joining operations and semantic losses, this work proposes an algorithm with multi-relational approach. Methods Aiming to compare traditional approach performance and multi-relational for mining association rules, this paper discusses an empirical study between PatriciaMine - an traditional algorithm - and its corresponding multi-relational proposed, MR-Radix. Results This work showed advantages of the multi-relational approach in performance over several tables, which avoids the high cost for joining operations from multiple tables and semantic losses. The performance provided by the algorithm MR-Radix shows faster than PatriciaMine, despite handling complex multi-relational patterns. The utilized memory indicates a more conservative growth curve for MR-Radix than PatriciaMine, which shows the increase in demand of frequent items in MR-Radix does not result in a significant growth of utilized memory like in PatriciaMine. Conclusion The comparative study between PatriciaMine and MR-Radix confirmed efficacy of the multi-relational approach in data mining process both in terms of execution time and in relation to memory usage. Besides that, the multi-relational proposed algorithm, unlike other algorithms of this approach, is efficient for use in large relational databases.