4 resultados para Redox process
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We describe the preparation of platinum nanoparticles (PtNPs) using the 3-n-propylpyridinium silsesquioxane chloride (SiPy+Cl-) as a nanoreactor and stabilizer. The formation of PtNPs was monitored by UV-Vis spectroscopy by measuring the decrease in the intensity of the band at 375 nm, which is attributed to the electronic absorption of PtCl62- ions. TEM images of Pt-SiPy+Cl- nanohybrid indicated an average size of 3-40 nm for PtNPs. The Pt-SiPy+Cl- was used as a polycation in the preparation of layer-by-layer films (LbL) on a glass substrate coated with fluorine-doped tin oxide (FTO) alternating with the polyanion poly(vinyl sulfonic acid) (PVS). The films were electrochemically tested in sulfuric acid to confirm the deposition of Pt-SiPy+Cl- onto the LbL films, observing the adsorption and desorption of hydrogen (E-pa = 0.1 V) and by the redox process of formation for PtO with E-pa = 1.3 V and E-pc = 0.65 V. FTIR and Raman spectra confirmed the presence of the PVS and Pt-SiPy+Cl- in the LbL films. A linear increase in the absorbance in the UV-Vis spectra of the Pt-SiPy+Cl- at 258 nm (pi -> pi* transition of the pyridine groups) with a number of Pt-SiPy+Cl-/PVS or PVS/SiPy+Cl- bilayers (R = 0.992) was observed. These LbL films were tested for the determination of dopamine (DA) in the presence of ascorbic acid (AA) with a detection limit (DL) on the order of 2.6 x 10(-6) mol L-1 and a quantification limit (QL) of 8.6 x 10(-6) mol L-1. The films exhibited a good repeatability and reproducibility, providing a potential difference of 550 mV for the oxidation of DA with AA interferent.
Resumo:
Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. Structured digital abstract XfDsbC and XfDsbC bind by x ray scattering (View Interaction: 1, 2) XfDsbC and XfDsbC bind by molecular sieving (View interaction) XfDsbC and XfDsbC bind by comigration in non denaturing gel electrophoresis (View interaction) XfDsbC and XfDsbC bind by cross-linking study (View Interaction: 1, 2) XfDsbC and XfDsbC bind by dynamic light scattering (View Interaction: 1, 2)
Resumo:
The proteasome is the primary contributor in intracellular proteolysis. Oxidized or unstructured proteins can be degraded via a ubiquitin-and ATP-independent process by the free 20S proteasome (20SPT). The mechanism by which these proteins enter the catalytic chamber is not understood thus far, although the 20SPT gating conformation is considered to be an important barrier to allowing proteins free entrance. We have previously shown that S-glutathiolation of the 20SPT is a post-translational modification affecting the proteasomal activities. Aims: The goal of this work was to investigate the mechanism that regulates 20SPT activity, which includes the identification of the Cys residues prone to S-glutathiolation. Results: Modulation of 20SPT activity by proteasome gating is at least partially due to the S-glutathiolation of specific Cys residues. The gate was open when the 20SPT was S-glutathiolated, whereas following treatment with high concentrations of dithiothreitol, the gate was closed. S-glutathiolated 20SPT was more effective at degrading both oxidized and partially unfolded proteins than its reduced form. Only 2 out of 28 Cys were observed to be S-glutathiolated in the proteasomal alpha 5 subunit of yeast cells grown to the stationary phase in glucose-containing medium. Innovation: We demonstrate a redox post-translational regulatory mechanism controlling 20SPT activity. Conclusion: S-glutathiolation is a post-translational modification that triggers gate opening and thereby activates the proteolytic activities of free 20SPT. This process appears to be an important regulatory mechanism to intensify the removal of oxidized or unstructured proteins in stressful situations by a process independent of ubiquitination and ATP consumption. Antioxid. Redox Signal. 16, 1183-1194.
Resumo:
The proteasome is a multimeric and multicatalytic intracellular protease responsible for the degradation of proteins involved in cell cycle control, various signaling processes, antigen presentation, and control of protein synthesis. The central catalytic complex of the proteasome is called the 20S core particle. The majority of these are flanked on one or both sides by regulatory units. Most common among these units is the 19S regulatory unit. When coupled to the 19S unit, the complex is termed the asymmetric or symmetric 26S proteasome depending on whether one or both sides are coupled to the 19S unit, respectively. The 26S proteasome recognizes poly-ubiquitinylated substrates targeted for proteolysis. Targeted proteins interact with the 19S unit where they are deubiquitinylated, unfolded, and translocated to the 20S catalytic chamber for degradation. The 26S proteasome is responsible for the degradation of major proteins involved in the regulation of the cellular cycle, antigen presentation and control of protein synthesis. Alternatively, the proteasome is also active when dissociated from regulatory units. This free pool of 20S proteasome is described in yeast to mammalian cells. The free 20S proteasome degrades proteins by a process independent of poly-ubiquitinylation and ATP consumption. Oxidatively modified proteins and other substrates are degraded in this manner. The 20S proteasome comprises two central heptamers (β-rings) where the catalytic sites are located and two external heptamers (α-rings) that are responsible for proteasomal gating. Because the 20S proteasome lacks regulatory units, it is unclear what mechanisms regulate the gating of α-rings between open and closed forms. In the present review, we discuss 20S proteasomal gating modulation through a redox mechanism, namely, S-glutathionylation of cysteine residues located in the α-rings, and the consequence of this post-translational modification on 20S proteasomal function.