4 resultados para Redes neurais MLP

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As estimações das taxas de inflação são de fundamental importância para os gestores, pois as decisões de investimento estão intimamente ligadas a elas. Contudo, o comportamento inflacionário tende a ser não linear e até mesmo caótico, tornando difícil a sua correta estimação. Essa característica do fenômeno pode tornar imprecisos os modelos mais simples de previsão, acessíveis às pequenas organizações, uma vez que muitos deles necessitam de grandes manipulações de dados e/ou softwares especializados. O presente artigo tem por objetivo avaliar, por meio de análise formal estatística, a eficácia das redes neurais artificiais (RNA) na previsão da inflação, dentro da realidade de organizações de pequeno porte. As RNA são ferramentas adequadas para mensurar os fenômenos inflacionários, por se tratar de aproximações de funções polinomiais, capazes de lidar com fenômenos não lineares. Para esse processo, foram selecionados três modelos básicos de redes neurais artificiais Multi Layer Perceptron, passíveis de implementação a partir de planilhas eletrônicas de código aberto. Os três modelos foram testados a partir de um conjunto de variáveis independentes sugeridas por Bresser-Pereira e Nakano (1984), com defasagem de um, seis e doze meses. Para tal, foram utilizados testes de Wilcoxon, coeficiente de determinação R² e o percentual de erro médio dos modelos. O conjunto de dados foi dividido em dois, sendo um grupo usado para treinamento das redes neurais artificiais, enquanto outro grupo era utilizado para verificar a capacidade de predição dos modelos e sua capacidade de generalização. Com isso, o trabalho concluiu que determinados modelos de redes neurais artificiais têm uma razoável capacidade de predição da inflação no curto prazo e se constituem em uma alternativa razoável para esse tipo de mensuração.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Muitas pesquisas estão sendo desenvolvidas buscando nos sistemas inteligentes soluções para diagnosticar falhas em máquinas elétricas. Estas falhas envolvem desde problemas elétricos, como curto-circuito numa das fases do estator, ate problemas mecânicos, como danos nos rolamentos. Dentre os sistemas inteligentes aplicados nesta área, destacam-se as redes neurais artificiais, os sistemas fuzzy, os algoritmos genéticos e os sistemas híbridos, como o neuro-fuzzy. Assim, o objetivo deste artigo é traçar um panorama geral sobre os trabalhos mais relevantes que se beneficiaram dos sistemas inteligentes nas diferentes etapas de análise e diagnóstico de falhas em motores elétricos, cuja principal contribuição está em disponibilizar diversos aspectos técnicos a fim de direcionar futuros trabalhos nesta área de aplicação.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provade a very Complexity of inferences in polytree-shaped semi-qualitative probabilistic networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that are behind the bayesian networks. This paper explores the computational complexity of semi-qualitative probabilistic networks, and takes the polytree-shaped networks as its main target. We show that the inference problem is coNP-Complete for binary polytrees with multiple observed nodes. We also show that interferences can be performed in time linear in the number of nodes if there is a single observed node. Because our proof is construtive, we obtain an efficient linear time algorithm for SQPNs under such assumptions. To the best of our knowledge, this is the first exact polynominal-time algorithm for SQPn. Together these results provide a clear picture of the inferential complexity in polytree-shaped SQPNs.