2 resultados para Reconfigurable optical add-drop multiplexer (ROADM)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
PURPOSE: To determine whether the improvement in intermediate vision after bilateral implantation of an aspheric multifocal intraocular lens (IOL) with a +3.00 diopter (D) addition (add) occurs at the expense of optical quality compared with the previous model with a +4.00 D add. SETTING: Department of Ophthalmology, University of Sao Paulo, Sao Paulo, Brazil. DESIGN: Prospective randomized double-masked comparative clinical trial. METHODS: One year after bilateral implantation of Acrysof Restor SN6AD1 +3.00 D IOLs or Acrysof Restor SN6AD3 +4.00 D IOLs, optical quality was evaluated by analyzing the in vivo modulation transfer function (MTF) and point-spread function (expressed as Strehl ratio). The Strehl ratio and MTF curve with a 4.0 pupil and a 6.0 mm pupil were measured by dynamic retinoscopy aberrometry. The uncorrected and corrected distance visual acuities at 4 m, uncorrected and distance-corrected near visual acuities at 40 cm, and uncorrected and distance-corrected intermediate visual acuities at 50 cm, 60 cm, and 70 cm were measured. RESULTS: Both IOL groups comprised 40 eyes of 20 patients. One year postoperatively, there were no statistically significant between-group differences in the MTF or Strehl ratio with either pupil size. There were no statistically significant between-group differences in distance or near visual acuity. Intermediate visual acuity was significantly better in the +3.00 D IOL group. CONCLUSION: Results indicate that the improvement in intermediate vision in eyes with the aspheric multifocal +3.00 D add IOL occurred without decreasing optical quality over that with the previous version IOL with a +4.00 D add.
Resumo:
The resistance to photodegradation of poly [(2-methoxy-5-n-hexyloxy)-p-phenylene vinylene] (OC1OC6-PPV) films was significantly enhanced by the use of poly(vinyl alcohol) 99% hydrolyzed as protective coating. The deposition of poly(vinyl alcohol) onto OC1OC6-PPV films did not affect the absorption and the emission spectra of the luminescent polymer. The protected film showed 5% drop on the absorbance at 500nm after 270 hours of light exposure while the unprotected film completely degraded in the same conditions. The conductivity of the protected film remained stable (around 7 × 10-10 S/m) while the value for the unprotected one dropped around two orders of magnitude after 100 hours of light exposure.