8 resultados para Receptors, CCR2 -- metabolism

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We recently demonstrated that Angiotensin-(3-4) [Ang-(3-4)], an Ang II-derived dipeptide, overcomes inhibition of plasma membrane Ca2+-ATPase promoted by nanomolar concentrations of Ang II in basolateral membranes of renal proximal tubule cells, with involvement of a so far unknown AT(2)R-dependent and NO-independent mechanism. The present study investigates the signaling pathway triggered by Ang-(3-4) that is responsible for counteracting the inhibitory effect of Ang II, and attempts to elucidate the functional interaction of the dipeptide with Ang II at the level of AT(2)R. Stimulation by cholera toxin of G(s)alpha protein structurally linked to AT(2)R as revealed by their co-immunoprecipitation mimicked the effect of Ang-(3-4) on Ca2+-ATPase activity. Furthermore, addition of dibutyril-cAMP (db-cAMP) mimicked Ang-(3-4), whereas the specific PKA inhibitor, PKAi((5-24)) peptide, suppressed the counter-regulatory effect of Ang-(3-4) and the AT(2)R agonist, CGP42112A. Membrane-associated PKA activity was stimulated by Ang-(3-4) or CGP42112A to comparable levels as db-cAMP, and the Ang-(3-4) effect was abrogated by the AT(2)R antagonist PD123319, whereas the AT(1)R antagonist Losartan had no effect. Ang-(3-4) stimulated PKA-mediated phosphorylation of Ca2+-ATPase and activated PKA to comparable levels. Binding assays demonstrated that Ang-(3-4) could not displace H-3-Ang II from HEK 293T cells expressing AT(2)R, but 10(-10) mol/L Ang-(3-4) resulted in the appearance of a probable higher-affinity site (picomolar range) for Ang II. The results presented herein demonstrate that Ang-(3-4), acting as an allosteric enhancer, suppresses Ang II-mediated inhibition of Ca2+-ATPase through an AT(2)R/cAMP/PKA pathway, after inducing conformational changes in AT(2)R that results in generation of higher-affinity sites for Ang II. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The aim of the present work was to investigate the involvement of the mu(1)-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. Methods: Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective mu(1)-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. Results: Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of mu(1)-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of mu(1)-opioid receptor decreased the duration of seizures. Conclusion: mu(1)-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of mu(1)-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CRH has been implicated as a mediator of stress-induced effects on the hypothalamus-pituitary-gonad axis, acting via CRH receptors in various brain regions. We investigated whether the effects of restraint stress on the secretion of gonadotropins on the morning of proestrus are mediated by the CRH-R1 or CRH-R2 receptors in the oval subdivision of the anterolateral BST, the central amygdala, the locus coeruleus (LC), or the A1 and A2 neuron groups in the medulla. At proestrus morning, rats were injected with antalarmin (a CRH-R1 antagonist), asstressin2-B (a CRH-R2 antagonist) or vehicles. Thirty minutes after the injection, the animals were placed into restraints for 30 min, and blood was sampled for 2 h. At the end of the experiment, the brains were removed for immunofluorescence analyses. Restraint stress increased the levels of FSH and LH. Antalarmin blocked the stress-induced increases in FSH and LH secretion, but astressin2-B only blocked the increase in FSH secretion. LC showed intense stress-induced neuronal activity. FOS/tyrosine-hydroxylase coexpression in LC was reduced by antalarmin, but not astressin2-B. The CRH-R1 receptor, more than CRH-R2 receptor, appears to be essential for the stimulation of the hypothalamus-pituitary-gonad axis by acute stress; this response is likely mediated in part by noradrenergic neurons in the LC. We postulate that the stress-induced facilitation of reproductive function is mediated, at least in part, by CRH action through CRH-R1 on noradrenaline neurons residing in the LC that trigger GnRH discharge and gonadotropin secretion. (Endocrinology 153: 4838-4848, 2012)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Cytokines and chemokines regulate bone remodeling during orthodontic tooth movement. CC chemokine ligand 2 (CCL2) is involved in osteoclast recruitment and activity, and its expression is increased in periodontal tissues under mechanical loading. In this study, we investigated whether the CC chemokine receptor 2 (CCR2)-CCL2 axis influences orthodontic tooth movement. Methods: A coil spring was placed in CCR2-deficient (CCR2(-/-)), wild-type, vehicle-treated, and P8A-treated (CCL2 analog) mice. In a histopathologic analysis, the amounts of orthodontic tooth movement and numbers of osteoclasts were determined. The expression of mediators involved in bone remodeling was evaluated by real-time polymerase chain reaction. Results: Orthodontic tooth movement and the number of TRAP-positive cells were significantly decreased in CCR2(-/-) and P8A-treated mice in relation to wild-type and vehicle-treated mice, respectively. The expressions of RANKL, RANK, and osteoblasts markers (COL-1 and OCN) were lower in CCR2(-/-) than in wild-type mice. No significant difference was found in osteoprotegerin levels between the groups. Conclusions: These data suggested a reduction of osteoclast and osteoblast activities in the absence of CCR2. The CCR2-CCL2 axis is positively associated with osteoclast recruitment, bone resorption, and orthodontic tooth movement. Therefore, blockage of the CCR2-CCL2 axis might be used in the future for modulating the extent of orthodontic tooth movement. (Am J Orthod Dentofacial Orthop 2012;141:153-60)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report changes in plasma arginine vasopressin (AVP) and oxytocin (OT) concentrations evoked by the microinjection of L-glutamate (L-glu) into the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus(PVN) of unanesthetized rats, as well as which local mechanisms are involved in their mediation. L-Glu microinjection (10 nmol/100 nl) into the SON increased the circulating levels of both AVP and OT. The AVP increases were blocked by local pretreatment with the selective non-N-methyl-D-aspartate (NMDA) receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) (2 nmol/100 nl), but it was not affected by pretreatment with the NMDA-receptor antagonist LY235959 (2 nmol/100 nl). The OT response to L-glu microinjection into the SON was blocked by local pretreatment with either NBQX or LY235959. Furthermore, the administration of either the non-NMDA receptor agonist (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) (5 nmol/100 nl) or NMDA receptor agonist NMDA (5 nmol/100 nl) into the SON had no effect on OT baseline plasma levels, but when both agonists were microinjected together these levels were increased. L-Glu microinjection into the PVN did not change circulating levels of either AVP or OT. However, after local pretreatment with LY235959, the L-glu microinjection increased plasma levels of the hormones. The L-glu microinjection into the PVN after the local treatment with NBQX did not affect the circulating AVP and OT levels. Therefore, results suggest the AVP release from the SON is mediated by activation of non-NMDA glutamate receptors, whereas the OT release from this nucleus is mediated by an interaction of NMDA and non-NMDA receptors. The present study also suggests an inhibitory role for NMDA receptors in the PVN on the release of AVP and OT. (Endocrinology 153: 2323-2331, 2012)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CB1, TRPV1 and NO can regulate glutamate release and modify defensive behaviors in regions related to defensive behavior such as the dorsolateral periaqueductal gray (dIPAG). A possible interaction between the endocannabinoid and nitrergic systems in this area, however, has not been investigated yet. The objective of the present work was to verify if activation of CB1 or TRPV1 receptors could interfere in the flight responses induced in rats by the injection of SIN-1, an NO donor, into the dIPAG. The results showed that local administration of a low dose (5 pmol) of anandamide (AEA) attenuated the flight responses, measured by the total distance moved and maximum speed in an open arena, induced by intra-dIPAG microinjection of SIN-1 (150 nmol). URB597 (0.1 nmol), an inhibitor of anandamide metabolism, produced similar effects. When animals were locally treated with the CB1 receptor antagonist AM251 the effective AEA dose (5 pmol) increased, rather than decreased, the flight reactions induced by SIN1-1. Higher (50-200 nmol) doses of AEA were ineffective and even tended to potentiate the SIN-1 effect. The TRPV1 antagonist capsazepine (CPZ, 30 nmol) prevented SIN-1 effects and attenuated the potentiation of its effect by the higher (200 nmol) AEA dose. The results indicate that AEA can modulate in a dual way the pro-aversive effects of NO in the dIPAG by activating CB1 or TRPV1 receptors. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crotoxin (CTX) is the main neurotoxic component of Crotalus durissus terrificus snake venom. It inhibits tumour growth and modulates the function of macrophages, which are essential cells in the tumour microenvironment. The present study investigated the effect of CTX on the secretory activity of monocultured macrophages and macrophages co-cultivated with LLC-WRC 256 cells. The effect of the macrophage secretory activities on tumour cell proliferation was also evaluated. Macrophages pre-treated with CTX (0.3 μg/mL) for 2 h were co-cultivated with LLC-WRC 256 cells, and the secretory activity of the macrophages was determined after 12, 24 and 48 h. The co-cultivation of CTX-treated macrophages with the tumour cells caused a 20% reduction in tumour cell proliferation. The production of both H2O2 and NO was increased by 41% and 29% after 24 or 48 h of co-cultivation, respectively, compared to the values for the co-cultures of macrophages of control. The level of secreted IL-1β increased by 3.7- and 3.2-fold after 12 h and 24 h of co-cultivation, respectively. Moreover, an increased level of LXA4 (25%) was observed after 24 h of co-cultivation, and a 2.3- and 2.1-fold increased level of 15-epi-LXA4 was observed after 24 h and 48 h, respectively. Boc-2, a selective antagonist of formyl peptide receptors, blocked both the stimulatory effect of CTX on the macrophage secretory activity and the inhibitory effect of these cells on tumour cell proliferation. Taken together, these results indicate that CTX enhanced the secretory activity of macrophages, which may contribute to the antitumour activity of these cells, and that activation of formyl peptide receptors appears to play a major role in this effect.