4 resultados para Real options analysis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background The generalized odds ratio (GOR) was recently suggested as a genetic model-free measure for association studies. However, its properties were not extensively investigated. We used Monte Carlo simulations to investigate type-I error rates, power and bias in both effect size and between-study variance estimates of meta-analyses using the GOR as a summary effect, and compared these results to those obtained by usual approaches of model specification. We further applied the GOR in a real meta-analysis of three genome-wide association studies in Alzheimer's disease. Findings For bi-allelic polymorphisms, the GOR performs virtually identical to a standard multiplicative model of analysis (e.g. per-allele odds ratio) for variants acting multiplicatively, but augments slightly the power to detect variants with a dominant mode of action, while reducing the probability to detect recessive variants. Although there were differences among the GOR and usual approaches in terms of bias and type-I error rates, both simulation- and real data-based results provided little indication that these differences will be substantial in practice for meta-analyses involving bi-allelic polymorphisms. However, the use of the GOR may be slightly more powerful for the synthesis of data from tri-allelic variants, particularly when susceptibility alleles are less common in the populations (≤10%). This gain in power may depend on knowledge of the direction of the effects. Conclusions For the synthesis of data from bi-allelic variants, the GOR may be regarded as a multiplicative-like model of analysis. The use of the GOR may be slightly more powerful in the tri-allelic case, particularly when susceptibility alleles are less common in the populations.
Resumo:
In this paper, an alternative skew Student-t family of distributions is studied. It is obtained as an extension of the generalized Student-t (GS-t) family introduced by McDonald and Newey [10]. The extension that is obtained can be seen as a reparametrization of the skewed GS-t distribution considered by Theodossiou [14]. A key element in the construction of such an extension is that it can be stochastically represented as a mixture of an epsilon-skew-power-exponential distribution [1] and a generalized-gamma distribution. From this representation, we can readily derive theoretical properties and easy-to-implement simulation schemes. Furthermore, we study some of its main properties including stochastic representation, moments and asymmetry and kurtosis coefficients. We also derive the Fisher information matrix, which is shown to be nonsingular for some special cases such as when the asymmetry parameter is null, that is, at the vicinity of symmetry, and discuss maximum-likelihood estimation. Simulation studies for some particular cases and real data analysis are also reported, illustrating the usefulness of the extension considered.
Resumo:
Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is an interest in studying latent variables (or latent traits). Usually such latent traits are assumed to be random variables and a convenient distribution is assigned to them. A very common choice for such a distribution has been the standard normal. Recently, Azevedo et al. [Bayesian inference for a skew-normal IRT model under the centred parameterization, Comput. Stat. Data Anal. 55 (2011), pp. 353-365] proposed a skew-normal distribution under the centred parameterization (SNCP) as had been studied in [R. B. Arellano-Valle and A. Azzalini, The centred parametrization for the multivariate skew-normal distribution, J. Multivariate Anal. 99(7) (2008), pp. 1362-1382], to model the latent trait distribution. This approach allows one to represent any asymmetric behaviour concerning the latent trait distribution. Also, they developed a Metropolis-Hastings within the Gibbs sampling (MHWGS) algorithm based on the density of the SNCP. They showed that the algorithm recovers all parameters properly. Their results indicated that, in the presence of asymmetry, the proposed model and the estimation algorithm perform better than the usual model and estimation methods. Our main goal in this paper is to propose another type of MHWGS algorithm based on a stochastic representation (hierarchical structure) of the SNCP studied in [N. Henze, A probabilistic representation of the skew-normal distribution, Scand. J. Statist. 13 (1986), pp. 271-275]. Our algorithm has only one Metropolis-Hastings step, in opposition to the algorithm developed by Azevedo et al., which has two such steps. This not only makes the implementation easier but also reduces the number of proposal densities to be used, which can be a problem in the implementation of MHWGS algorithms, as can be seen in [R.J. Patz and B.W. Junker, A straightforward approach to Markov Chain Monte Carlo methods for item response models, J. Educ. Behav. Stat. 24(2) (1999), pp. 146-178; R. J. Patz and B. W. Junker, The applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses, J. Educ. Behav. Stat. 24(4) (1999), pp. 342-366; A. Gelman, G.O. Roberts, and W.R. Gilks, Efficient Metropolis jumping rules, Bayesian Stat. 5 (1996), pp. 599-607]. Moreover, we consider a modified beta prior (which generalizes the one considered in [3]) and a Jeffreys prior for the asymmetry parameter. Furthermore, we study the sensitivity of such priors as well as the use of different kernel densities for this parameter. Finally, we assess the impact of the number of examinees, number of items and the asymmetry level on the parameter recovery. Results of the simulation study indicated that our approach performed equally as well as that in [3], in terms of parameter recovery, mainly using the Jeffreys prior. Also, they indicated that the asymmetry level has the highest impact on parameter recovery, even though it is relatively small. A real data analysis is considered jointly with the development of model fitting assessment tools. The results are compared with the ones obtained by Azevedo et al. The results indicate that using the hierarchical approach allows us to implement MCMC algorithms more easily, it facilitates diagnosis of the convergence and also it can be very useful to fit more complex skew IRT models.
Resumo:
The widespread independent evolution of analogous bioluminescent systems is one of the most impressive and diverse examples of convergent evolution on earth. There are roughly 30 extant bioluminescent systems that have evolved independently on Earth, with each system likely having unique enzymes responsible for catalysing the bioluminescent reaction. Bioluminescence is a chemical reaction involving a luciferin molecule and a luciferase or photoprotein that results in the emission of light. Some independent systems utilize the same luciferin, such as the use of tetrapyrrolic compounds by krill and dinoflagellates, and the wide use of coelenterazine by marine organisms, while the enzymes involved are unique. One common thread among all the different bioluminescent systems is the requirement of molecular oxygen. Bioluminescence is found in most forms of life, especially marine organisms. Bioluminescence in known to benefit the organism by: attraction, repulsion, communication, camouflage, and illumination. The marine ecosystem is significantly affected by bioluminescence, the only light found in the pelagic zone and below is from bioluminescent organisms. Transgenic bioluminescent organisms have revolutionized molecular research, medicine and the biotechnology industry. The use of bioluminescence in studying molecular pathways and disease allows for non-invasive and real-time analysis. Bioluminescence-based assays have been developed for several analytes by coupling luminescence to many enzyme-catalysed reactions. Received 17 February 2012, accepted 27 March 2012, first published online 2 May 2012