3 resultados para Rattalino, Piero
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper provides a description of the wave climate off the Brazilian coast based on an eleven-year time series (Jan/1997-Dec/2007) obtained from the NWW3 operational model hindcast reanalysis. Information about wave climate in Brazilian waters is very scarce and mainly based on occasional short-term observations, the present analysis being the first covering such temporal and spatial scales. To define the wave climate, six sectors were defined and analyzed along the Brazilian shelf-break: South (W1), Southeast (W2), Central (W3), East (W4), Northeast (W5) and North (W6). W1, W2 and W3 wave regimes are determined by the South Atlantic High (SAH) and the passage of synoptic cold fronts; W4, W5 and W6 are controlled by the Intertropical Convergence Zone (ITCZ) and its meridional oscillation. The most energetic waves are from the S, generated by the strong winds associated to the passage of cold fronts, which mainly affect the southern region. Wave power presents a decrease in energy levels from south to north, with its annual variation showing that the winter months are the most energetic in W1 to W4, while in W5 and W6 the most energetic conditions occur during the austral summer. The information presented here provides boundary conditions for studies related to coastal processes, fundamental for a better understanding of the Brazilian coastal zone.
Resumo:
The Cretaceous Banhado alkaline complex in southeastern Brazil presents two potassic SiO2-undersaturated series. The high-Ca magmatic series consist of initially fractionated olivine (Fo(92-91)) + diopside (Wo(48-43)En(49-35)Ae(0-7)), as evidenced by the presence of xenocrysts and xenoliths. In that sequence, diopside (Wo(47-38)En(46-37)Ae(0-8)) + phlogopite + apatite + perovskite (Prv(> 92)) crystallized to form the phlogopite melteigite and led to the Ca enrichment of the magma. Diopside (Wo(47-41)En(32-24) Ae(3-14)) continued to crystallize as an early mafic mineral, followed by nepheline (Ne(74.8-70.1)Ks(26.3-21.2)Qz(7.6-0.9)) and leucite (Lc(65-56)) and subsequently by melanite and potassic feldspar (Or(85-99)Ab(1-7)) to form melanite ijolites, wollastonite-melanite urtites and melanite-nepheline syenites. Melanite-pseudoleucite-nepheline syenites are interpreted to be a leucite accumulation. Melanite nephelinite dykes are believed to represent some of the magmatic differentiation steps. The low-Ca magmatic series is representative of a typical fractionation of aegirine-augite (Wo(36-29)En(25-4)Ae(39-18)) + alkali feldspar (Or(57-96)Ab(3-43)) + nepheline (Ne(76.5-69.0)Ks(19.9-14.4)Qz(15.1-7.7)) + titanite from phonolite magma. The evolution of this series from potassic nepheline syenites to sodic sodalite syenites and sodalitolites is attributed to an extensive fractionation of potassic feldspar, which led to an increase of the NaCl activity in the melt during the final stages forming sodalite-rich rocks. Phonolite dykes followed a similar evolutionary process and also registered some crustal assimilation. The mesocratic nepheline syenites showed interactions with phlogopite melteigites, such as compatible trace element enrichments and the presence of diopside xenocrysts, which were interpreted to be due to a mixing/mingling process of phonolite and nephelinite magmas. The geochemical data show higher TiO2 and P2O5 contents and lower SiO2 contents for the high-Ca series and different LILE evolution trends and REE chondrite-normalized patterns as compared to the low-Ca series. The Sr-87/Sr-86, Nd-143/Nd-144, Pb-206/Pb-204 and Pb-208/Pb-204 initial ratios for the high-Ca series (0.70407-0.70526, 0.51242-0.51251, 17.782-19.266 and 38.051-39.521, respectively) were slightly different from those of the low-Ca series (0.70542-0.70583, 0.51232-0.51240, 17.758-17.772 and 38.021-38.061, respectively). For both series, a CO2-rich potassic metasomatized lithospheric mantle enriched the source with rutile-bearing phlogopite clinopyroxenite veins. Kamafugite-like parental magma is attributed to the high-Ca series with major contributions from the melting of the veins. Potassic nephelinite-like parental magma is assigned to the low-Ca series, where the metasomatized wall-rock played a more significant role in the melting process.
Resumo:
The present study evaluated the interchangeability of prosthetic components for external hexagon implants by measuring the precision of the implant/abutment (I/A) interface with scanning electron microscopy. Ten implants for each of three brands (SIN, Conexão, Neodent) were tested with their respective abutments (milled CoCr collar rotational and non-rotational) and another of an alternative manufacturer (Microplant) in randomly arranged I/A combinations. The degree of interchangeability between the various brands of components was defined using the original abutment interface gap with its respective implant as the benchmark dimension. Accordingly, when the result for a given component placed on an implant was equal to or smaller then that gap measured when the original component of the same brand as the implant was positioned, interchangeability was considered valid. Data were compared with the Kruskal-Wallis test at 5% significance level. Some degree of misfit was observed in all specimens. Generally, the non-rotational component was more accurate than its rotational counterpart. The latter samples ranged from 0.6-16.9 µm, with a 4.6 µm median; and the former from 0.3-12.9 µm, with a 3.4 µm median. Specimens with the abutment and fixture from Conexão had larger microgap than the original set for SIN and Neodent (p<0.05). Even though the latter systems had similar results with their respective components, their interchanged abutments did not reproduce the original accuracy. The results suggest that the alternative brand abutment would have compatibility with all systems while the other brands were not completely interchangeable.