7 resultados para Rats, Inbred WKY

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sex differences in Ca2+-dependent signalling and homoeostasis in the vasculature of hypertensive rats are well characterized. However, sex-related differences in SOCE (store-operated Ca2+ entry) have been minimally investigated. We hypothesized that vascular protection in females, compared with males, reflects decreased Ca2+ mobilization due to diminished activation of Orai 1/STIM 1 (stromal interaction molecule I). In addition, we investigated whether ovariectomy in females affects the activation of the Orai 1/STIM 1 pathway. Endothelium-denuded aortic rings from male and female SHRSP (stroke-prone spontaneously hypertensive rats) and WKY (Wistar Kyoto) rats and from OVX (ovariectomized) or sham female SHRSP and WKY rats were used to functionally evaluate Ca2+ influx-induced contractions. Compared with females, aorta from male SHRSP displayed: (i) increased contraction during the Ca2+-loading period; (ii) similar transient contraction during Ca2+ release from the intracellular stores; (iii) increased activation of STIM 1 and Orai1, as shown by the blockade of STIM 1 and Orai1 with neutralizing antibodies, which reversed the sex differences in contraction during the Ca2+-loading period; and (iv) increased expression of STIM I and Orai I. Additionally, we found that aortas from OVX-SHRSP showed increased contraction during the Ca2+-loading period and increased Orai1 expression, but no changes in the SR (sarcoplasmic reticulum)-buffering capacity or STIM I expression. These findings suggest that augmented activation of STIM 1/Orai 1 in aortas from male SHRSP represents a mechanism that contributes to sex-related impaired control of intracellular Ca2+ levels. Furthermore, female sex hormones may negatively modulate the STIM/Orai 1 pathway, contributing to vascular protection observed in female rats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The sural nerve has been widely investigated in experimental models of neuropathies but information about its involvement in hypertension was not yet explored. The aim of the present study was to compare the morphological and morphometric aspects of different segments of the sural nerve in male and female spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Rats aged 20 weeks (N = 6 in each group) were investigated. After arterial pressure and heart rate recordings in anesthetized animals, right and left sural nerves were removed and prepared for epoxy resin embedding and light microscopy. Morphometric analysis was performed with the aid of computer software, and took into consideration the fascicle area and diameter, as well as myelinated fiber number, density, area and diameter. Results: Significant differences were observed for the myelinated fiber number and density, comparing different genders of WKY and SHR. Also, significant differences for the morphological (thickening of the endoneural blood vessel walls and lumen reduction) and morphometric (myelinated fibers diameter and G ratio) parameters of myelinated fibers were identified. Morphological exam of the myelinated fibers suggested the presence of a neuropathy due to hypertension in both SHR genders. Conclusions: These results indicate that hypertension altered important morphometric parameters related to nerve conduction of sural nerve in hypertensive animals. Moreover the comparison between males and females of WKY and SHR allows the conclusion that the morphological and morphometric parameters of sural nerve are not gender related. The morphometric approach confirmed the presence of neuropathy, mainly associated to the small myelinated fibers. In conclusion, the present study collected evidences that the high blood pressure in SHR is affecting the sural nerve myelinated fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerobic exercise training (ET) has been established as an important non-pharmacological treatment of hypertension, since it decreases blood pressure. Studies show that the skeletal muscle abnormalities in hypertension are directly associated with capillary rarefaction, higher percentage of fast-twitch fibers (type II) with glycolytic metabolism predominance and increased muscular fatigue. However, little is known about these parameters in hypertension induced by ET. We hypothesized that ET corrects capillary rarefaction, potentially contributing to the restoration of the proportion of muscle fiber types and metabolic proprieties. Twelve-week old Spontaneously Hypertensive Rats (SHR, n=14) and Wistar Kyoto rats (WKY, n=14) were randomly assigned into 4 groups: SHR, trained SHR (SHR-T), WKY and trained WKY (WKY-T). As expected, ten weeks of ET was effective in reducing blood pressure in SHR-T group. In addition, we analyzed the main markers of ET. Resting bradycardia, increase of exercise tolerance, peak oxygen uptake and citrate synthase enzyme activity in trained groups (WKY-T and SHR-T) showed that the aerobic condition was achieved. ET also corrected the skeletal muscle capillary rarefaction in SHR-T. In parallel, we observed reduction in percentage of type IIA and IIX fibers and simultaneous augmented percentage of type I fibers induced by ET in hypertension. These data suggest that ET prevented changes in soleus fiber type composition in SHR, since angiogenesis and oxidative enzyme activity increased are important adaptations of ET, acting in the maintenance of muscle oxidative metabolism and fiber profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nucleus tractus solitarii (NTS), located in the brainstem, is one of the main nuclei responsible for integrating different signals in order to originate a specific and orchestrated autonomic response. Antihypertensive drugs are well known to stimulate alpha(2)-adrenoceptor (alpha(2R)) in brainstem cardiovascular regions to induce reduction in blood pressure. Because alpha(2R) impairment is present in several models of hypertension, the aim of the present study was to investigate the distribution and density of alpha(2R) binding within the NTS of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats during development (1,15,30 and 90 day-old) by an in vitro autoradiographical study. The NTS shows heterogeneous distribution of alpha(2R) in dorsomedial/dorsolateral, subpostremal and medial/intermediate subnuclei. Alpha(2R) increased from rostral to caudal dorsomedial/dorsolateral subnuclei in 30 and 90 day-old SHR but not in WKY. Alpha(2R) decreased from rostral to caudal subpostremal subnucleus in 15, 30 and 90 day-old SHR but not in WKY. Medial/intermediate subnuclei did not show any changes in alpha(2R) according to NTS levels. Furthermore, alpha(2R) are decreased in SHR as compared with WKY in all NTS subnuclei and in different ages. Surprisingly, alpha(2R) impairment was also found in pre-hypertensive stages, specifically in subpostremal subnucleus of 15 day-old rats. Finally, alpha(2R) decrease from 1 to 90 day-old rats in all subnuclei analyzed. This decrease is different between strains in rostral dorsomedial/dorsolateral and caudal subpostremal subnuclei within the NTS. In summary, our results highlight the importance of alpha(2R) distribution within the NTS regarding the neural control of blood pressure and the development of hypertension. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stern JE, Sonner PM, Son SJ, Silva FC, Jackson K, Michelini LC. Exercise training normalizes an increased neuronal excitability of NTS-projecting neurons of the hypothalamic paraventricular nucleus in hypertensive rats. J Neurophysiol 107: 2912-2921, 2012. First published February 22, 2012; doi:10.1152/jn.00884.2011.-Elevated sympathetic outflow and altered autonomic reflexes, including impaired baroreflex function, are common findings observed in hypertensive disorders. Although a growing body of evidence supports a contribution of preautonomic neurons in the hypothalamic paraventricular nucleus (PVN) to altered autonomic control during hypertension, the precise underlying mechanisms remain unknown. Here, we aimed to determine whether the intrinsic excitability and repetitive firing properties of preautonomic PVN neurons that innervate the nucleus tractus solitarii (PVN-NTS neurons) were altered in spontaneously hypertensive rats (SHR). Moreover, given that exercise training is known to improve and/or correct autonomic deficits in hypertensive conditions, we evaluated whether exercise is an efficient behavioral approach to correct altered neuronal excitability in hypertensive rats. Patch-clamp recordings were obtained from retrogradely labeled PVN-NTS neurons in hypothalamic slices obtained from sedentary (S) and trained (T) Wistar-Kyoto (WKY) and SHR rats. Our results indicate an increased excitability of PVN-NTS neurons in SHR-S rats, reflected by an enhanced input-output function in response to depolarizing stimuli, a hyperpolarizing shift in Na+ spike threshold, and smaller hyperpolarizing afterpotentials. Importantly, we found exercise training in SHR rats to restore all these parameters back to those levels observed in WKY-S rats. In several cases, exercise evoked opposing effects in WKY-S rats compared with SHR-S rats, suggesting that exercise effects on PVN-NTS neurons are state dependent. Taken together, our results suggest that elevated preautonomic PVN-NTS neuronal excitability may contribute to altered autonomic control in SHR rats and that exercise training efficiently corrects these abnormalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background: Oral health complications in diabetes and hypertension include decreased salivary secretion. The sodium-glucose cotransporter 1 (SGLT1) protein, which transports 1 glucose/2 Na+/264 H2O molecules, is described in salivary glands. We hypothesized that changes in SGLT1 expression in the luminal membrane of ductal cell may be related to an altered salivary flow. Findings: By immunohistochemistry, we investigated SGLT1 expression in ductal cells of parotid and submandibular glands from Wistar Kyoto rats (WKY), diabetic WKY (WKY-D), spontaneously hypertensive rats (SHR) and diabetic SHR (SHR-D), as well as in parotid glands from WKY subjected to sympathetic stimulation, with or without previous propranolol blockade. Diabetes and hypertension decreased the salivary secretion and increased SGLT1 expression in the luminal membrane of ductal cells, and their association exacerbated the regulations observed. After 30 min of sympathetic stimulation, SGLT1 increased in the luminal membrane of ductal cells, and that was blocked by previous injection of propranolol. Conclusions: SGLT1 expression increases in the luminal membrane of salivary gland ductal cells and the salivary flow decreases in diabetic and hypertensive rats, which may be related to sympathetic activity. This study highlights the water transporter role of SGLT1 in salivary glands, which, by increasing ductal water reabsorption, may explain the hyposalivation of diabetic and hypertensive subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Oral health complications in diabetes and hypertension include decreased salivary secretion. The sodium-glucose cotransporter 1 (SGLT1) protein, which transports 1 glucose/2 Na+/264 H2O molecules, is described in salivary glands. We hypothesized that changes in SGLT1 expression in the luminal membrane of ductal cell may be related to an altered salivary flow. Findings By immunohistochemistry, we investigated SGLT1 expression in ductal cells of parotid and submandibular glands from Wistar Kyoto rats (WKY), diabetic WKY (WKY-D), spontaneously hypertensive rats (SHR) and diabetic SHR (SHR-D), as well as in parotid glands from WKY subjected to sympathetic stimulation, with or without previous propranolol blockade. Diabetes and hypertension decreased the salivary secretion and increased SGLT1 expression in the luminal membrane of ductal cells, and their association exacerbated the regulations observed. After 30 min of sympathetic stimulation, SGLT1 increased in the luminal membrane of ductal cells, and that was blocked by previous injection of propranolol. Conclusions SGLT1 expression increases in the luminal membrane of salivary gland ductal cells and the salivary flow decreases in diabetic and hypertensive rats, which may be related to sympathetic activity. This study highlights the water transporter role of SGLT1 in salivary glands, which, by increasing ductal water reabsorption, may explain the hyposalivation of diabetic and hypertensive subjects