3 resultados para Random surface
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objectives: This study evaluated the surface microhardness (SM) and roughness (SR) alterations of dental resins submitted to pH catalysed degradation regimens. Methods: Thirty discs of each TPH Spectrum (Dentsply), Z100 (3M-ESPE), or an unfilled experimental bis-GMA/TEGDMA resin were fabricated, totaling 90 specimens. Each specimen was polymerized for 40 s, finished, polished, and individually stored in deionized water at 37 degrees C for 7 days. Specimens were randomly assigned to the following pH solutions: 1.0, 6.9 or 13, and for SM or SR evaluations (n = 5). Baseline Knoop-hardness of each specimen was obtained by the arithmetic mean of five random micro-indentations. For SR, mean baseline values were obtained by five random surface tracings (R-a). Specimens were then soaked in one of the following storage media at 37 degrees C: (1) 0.1 M, pH 1.0 HCl, (2) 0.1 N, pH 13.0 NaOCl, and (3) deionized water (pH 6.9). Solutions were replaced daily. Repeated SM and SR measurements were performed at the 3-, 7- and 14-day storage time intervals. For each test and resin, data were analysed by two-way ANOVA followed by Tukey's test (alpha = 0.05). Results: There was significant decrease in SM and increase in SR values of composites after storage in alkaline medium. TPH and Z100 presented similar behaviour for SM and SR after immersion in the different media, whereas unfilled resin values showed no significant change. Conclusion: Hydrolytic degradation of resin composites seems to begin with the silanized inorganic particles and therefore depend on their composition. Significance: To accelerate composite hydrolysis and produce quick in vitro microstructural damage, alkaline medium appears to be more suitable than acidic medium. Contemporary resin composite properties seem to withstand neutral and acidic oral environments tolerably well. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effectiveness of different sealants applied to a nanofiller composite resin. Forty specimens of Filtek Z-350 were obtained after inserting the material in a 6x3 mm stainless steel mold followed by light activation for 20 s. The groups were divided (n=10) according to the surface treatment applied: Control group (no surface treatment), Fortify, Fortify Plus and Biscover LV. The specimens were subjected to simulated toothbrushing using a 200 g load and 250 strokes/min to simulate 1 week, 1, 3 and 6 months and 1 and 3 years in the mouth, considering 10,000 cycles equivalent to 1 year of toothbrushing. Oral-B soft-bristle-tip toothbrush heads and Colgate Total dentifrice at a 1:2 water-dilution were used. After each simulated time, surface roughness was assessed in random triplicate readings. The data were submitted to two-way ANOVA and Tukey's test at a 95% confidence level. The specimens were observed under scanning electron microscopy (SEM) after each toothbrushing cycle. The control group was not significantly different (p>0.05) from the other groups, except for Fortify Plus (p<0.05), which was rougher. No significant differences (p>0.05) were observed at the 1-month assessment between the experimental and control groups. Fortify and Fortify Plus presented a rougher surface over time, differing from the baseline (p<0.05). Biscover LV did not differ (p>0.05) from the baseline at any time. None of the experimental groups showed a significantly better performance (p>0.05) than the control group at any time. SEM confirmed the differences found during the roughness testing. Surface penetrating sealants did not improve the roughness of nanofiller composite resin.
Resumo:
There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We investigated nanocomposites produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. During the implantation, the excess of metal atom concentration above the solubility limit leads to nucleation and growth of metal nanoparticles, driven by the temperature and temperature gradients within the implanted sample including the beam-induced thermal characteristics. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), that can be estimated by computer simulation using the TRIDYN. This is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study suggests that the nanoparticles form a bidimentional array buried few nanometers below the substrate surface. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples showed the metallic nanoparticles formed in the insulating matrix. The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted. These experimental results were compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement was found between the experimental results and the predictions of the theory. It was possible to conclude, in all cases, that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.