4 resultados para Raman modes

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An extensive investigation of strontium titanate, SrTiO3 (STO), nanospheres synthesized via a microwave-assisted hydrothermal (MAH) method has been conducted to gain a better insight into thermodynamic, kinetic, and reaction phenomena involved in STO nucleation and crystal growth processes. To this end, quantum chemical modeling based on the density functional theory and periodic super cell models were done. Several experimental techniques were employed to get a deep characterization of structural and optical features of STO nanospheres. A possible formation mechanism was proposed, based on dehydration of titanium and strontium clusters followed by mesoscale transformation and a self-assembly process along an oriented attachment mechanism resulting in spherical like shape. Raman and XANES analysis renders a noncentrosymmetric environment for the octahedral titanium, while infrared and first order Raman modes reveal OH groups which are unsystematically incorporated into uncoordinated superficial sites. These results seem to indicate that the key component is the presence of distorted TiO6 clusters to engender a luminescence property. Analysis of band structure, density Of states, and charge map shows that there is a close relationship among local broken symmetry, polarization, and energy split of the 3d orbitals of titanium. The interplay among these electronic and structural features provides necessary conditions to evaluate its luminescent properties under two energy excitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcium tantalite (CaTa2O6) single crystal fibers were obtained by the laser-heated pedestal growth method (LHPG). At room temperature, this material can present three polymorphic modifications. The rapid crystallization inherent to the LHPG method produced samples within the Pm3 space group, with some chemical disorder. In order to check for polymorphic-induced transformations, the CaTa2O6 fibers have been submitted to different thermal treatments and investigated by micro-Raman spectroscopy. For short annealing times (15 min) at 1200 °C, the cubic modification was maintained, though with an improved crystalline quality, as evidenced by the enhanced inelastic scattered intensity (by ca. 250%) and narrowing of Raman bands. The polarized Raman spectra respected very well the predicted symmetries and the selection rules for this cubic modification. On the other hand, long annealing times (24 h) at 1200 °C led to a complete (irreversible) polymorphic transformation. The Raman bands became still more intense (ca. 15 times larger than for the as-grown fibers), narrower, and several new modes appeared. Also, the spectra became unpolarized, demonstrating a polycrystalline nature of the transformed crystals. The observed Raman modes could be fully assigned to an orthorhombic modification of CaTa2O6 belonging to the Pnma space group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquids based on 1-alkyl-3-methylimidazolium cations and the hydrogen sulfate (or bisulfate) anion, HSO4-, are much more viscous than ionic liquids with alkyl sulfates, RSO4-. The structural origin of the high viscosity of HSO4- ionic liquids is unraveled from detailed comparison of the anion Raman bands in 1-ethyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium hydrogen sulfate with available data for simple HSO(4)(-) salts in crystalline phase, molten phase, and aqueous solution. Two Raman bands at 1046 and 1010 cm(-1) have been assigned as symmetric stretching modes nu(s)(S = O) of HSO4-, the latter being characteristic of chains of hydrogen-bonded anions. The intensity of this component increases in the supercooled liquid phase. For comparison purposes, Raman spectra of 1-ethyl-3-methylimidazolium ethyl sulfate and 1-butyl-3-methylimidazolium methyl sulfate have been also obtained. There is no indication of difference in the strength of hydrogen bond interactions of imidazolium cations with HSO4- or RSO4- anions. Raman spectra at high pressures, up to 2.6 GPa, are also discussed. Raman spectroscopy provides evidence that hydrogen-bonded anions resulting in anion-anion interaction is the reason for the high viscosity of imidazolium ionic liquids with HSO4-. If the ionic liquid is exposed to moisture, these structures are disrupted upon absorption of water from the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a surface-enhanced Raman scattering (SERS) systematic investigation regarding the functionalization of gold (Au) and silver (Ag) nanoparticles with diphenyl dichalcogenides, i.e. diphenyl disulfide, diphenyl diselenide, and diphenyl ditelluride. Our results showed that, in all cases, functionalization took place with the cleavage of the chalcogenchalcogen bond on the surface of the metal. According to our density functional theory calculations, the molecules assumed a tilted orientation with respect to the metal surface for both Au and Ag, in which the angle of the phenyl ring relative to the metallic surface decreased as the mass of the chalcogen atom increased. The detected differences in the ordinary Raman and SERS spectra were assigned to the distinct stretching frequencies of the carbonchalcogen bond and its relative contribution to the ring vibrational modes. In addition, the SERS spectra showed that there was no significant interaction between the phenyl ring and the surface, in agreement with the tilted orientation observed from our density functional theory calculations. The results described herein indicate that diphenyl dichalcogenides can be successfully employed as starting materials for the functionalization of Au nanoparticles with organosulfur, organoselenium, and organotellurium compounds. On the other hand, diphenyl disulfide and diphenyl diselenide could be employed for the functionalization of Ag nanoparticles, while the partial oxidation of the organotellurium unit could be detected on the Ag surface. Copyright (C) 2011 John Wiley & Sons, Ltd.