66 resultados para Rain forest area
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In tropical forests, the environmental heterogeneity can provide niche partitioning at local scales and determine the diversity and plant species distribution. Thus, this study aimed to investigate the variations of tree species structure and distribution in response to relief and soil profile features in a portion of the largest remnant of Brazilian Atlantic rain forest. All trees >= 5 cm diameter at breast height were recorded in two 0.99 ha plots. Topographic survey and a soil characterization were accomplished in both plots. Topsoil samples (0-20 cm) were taken from 88 quadrats and analyzed for chemical and particle size properties. Differences for both diversity and tree density were identified among three kinds of soils. A canonical correspondence analysis (CCA) indicated that the specific abundance varied among the three kinds of soils mapped: a shallow Udept - Orthent / Aquent gradient, probably due to differences in soil drainage. Nutrient content was less likely to affect tree species composition and distribution than relief, pH, Al3+, and soil texture. Some species were randomly distributed and did not show restriction to relief and soil properties. However, preferences in niche occupation detected in this study, derived from the catenary environments found, rise up as an important explanation for the high tree species diversity in tropical forests.
Resumo:
Questions What are the main features of the seed rain in a fragmented Atlantic forest landscape? Can seed rain species attributes (life form, dispersal mode, successional status) relate to the spatial arrangement (size and number of fragments, edge density and presence of corridor) of forest fragments in the landscape? How does the rain forest landscape structure affect the seed rain? Location Atlantic rainforest, Sao Paulo State, Southeastern Brazil. Methods Seed rain samples were collected monthly throughout 1yr, counted, identified and classified according to species dispersal mode, successional status and life form. Seed rain composition was compared with woody species near the seed traps. Relationships between seed rain composition and landscape spatial arrangement (fragment area, presence of corridor, number of fragments in the surroundings, proximity of fragments, and edge density) were tested using canonical correspondence analysis (CCA). Results We collected 20142 seeds belonging to 115 taxa, most of them early successional and anemochorous trees. In general, the seed rain had a species composition distinct from that of the nearby forest tree community. Small isolated fragments contained more seeds, mainly of anemochorous, epiphytic and early-successional species; large fragments showed higher association with zoochorous and late-successional species compared to small fragments. The CCA significantly distinguished the species dispersal mode according to fragment size and isolation, anemochorous species being associated to small and isolated fragments, and zoochorous species to larger areas and fragment aggregation. Nevertheless, a gradient driven by proximity (PROX) and edge density (ED) segregated lianas (in the positive extremity), early successional and epiphyte species (in the negative end); large fragments were positively associated to PROX and ED. Conclusions The results highlight the importance of the size and spatial arrangement of forest patches to promote habitat connectivity and improve the flux of animal-dispersed seeds. Landscape structure controls seed fluxes and affects plant dispersal capacity, potentially influencing the composition and structure of forest fragments. The seed rain composition may be used to assess the effects of landscape spatial structure on plant assemblages, and provide relevant information for biodiversity conservation.
Resumo:
Background The significant biodiversity found in Brazil is a potential for the emergence of new zoonoses. Study in some places of the world suggest of the presence to hantavirus in tissues of bats. Researches of hantavirus in wildlife, out rodents, are very scarce in Brazil. Therefore we decided to investigate in tissues of different species of wild animals captured in the same region where rodents were detected positive for this virus. The present work analyzed ninety-one animals (64 rodents, 19 opossums, and 8 bats) from a region of the Atlantic forest in Biritiba Mirin City, São Paulo State, Brazil. Lungs and kidneys were used for RNA extraction. Findings The samples were screened for evidence of hantavirus infection by SYBR-Green-based real-time RT-PCR. Sixteen samples positive were encountered among the wild rodents, bats, and opossums. The detection of hantavirus in the lungs and kidneys of three marsupial species (Micoureus paraguayanus, Monodelphis ihering, and Didelphis aurita) as well in two species of bats (Diphylla ecaudata and Anoura caudifer) is of significance because these new hosts could represent an important virus reservoirs.
Resumo:
Between December 2007 and March 2009, small mammals were captured in 6 Atlantic Forest patches in Brazil. We assessed tick-host associations and whether they differ among forest strata, sites, seasons, and host age classes or between sexes. Moreover, we assessed the exposure of animals to Rickettsia spp. In total, 432 animals were captured and 808 ticks were found on 32-9% of them. Significant differences were found among host species, collection sites, and forest strata; microhabitat preference was a strong risk factor for tick infestation. The highest tick density rates were recorded in forest fragments settled in rural areas; 91.3% of the ticks were collected from animals trapped in these forest fragments. A high prevalence (68.8%) of antibodies to Rickettsia spp. was detected among animals. This study suggests that disturbed Atlantic Forest fragments provide an environment for ticks and small mammals, which are highly exposed to rickettsiae. It also indicates that forest patches settled in rural areas are usually associated with higher small mammal diversity as well as with higher tick density rates.
Resumo:
Theoretical and empirical studies demonstrate that the total amount of forest and the size and connectivity of fragments have nonlinear effects on species survival. We tested how habitat amount and configuration affect understory bird species richness and abundance. We used mist nets (almost 34,000 net hours) to sample birds in 53 Atlantic Forest fragments in southeastern Brazil. Fragments were distributed among 3 10,800-ha landscapes. The remaining forest in these landscapes was below (10% forest cover), similar to (30%), and above (50%) the theoretical fragmentation threshold (approximately 30%) below which the effects of fragmentation should be intensified. Species-richness estimates were significantly higher (F = 3715, p = 0.00) where 50% of the forest remained, which suggests a species occurrence threshold of 30-50% forest, which is higher than usually occurs (<30%). Relations between forest cover and species richness differed depending on species sensitivity to forest conversion and fragmentation. For less sensitive species, species richness decreased as forest cover increased, whereas for highly sensitive species the opposite occurred. For sensitive species, species richness and the amount of forest cover were positively related, particularly when forest cover was 30-50%. Fragment size and connectivity were related to species richness and abundance in all landscapes, not just below the 30% threshold. Where 10% of the forest remained, fragment size was more related to species richness and abundance than connectivity. However, the relation between connectivity and species richness and abundance was stronger where 30% of the landscape was forested. Where 50% of the landscape was forested, fragment size and connectivity were both related to species richness and abundance. Our results demonstrated a rapid loss of species at relatively high levels of forest cover (30-50%). Highly sensitive species were 3-4 times more common above the 30-50% threshold than below it; however, our results do not support a unique fragmentation threshold.
Resumo:
Assessment of the suitability of anthropogenic landscapes for wildlife species is crucial for setting priorities for biodiversity conservation. This study aimed to analyse the environmental suitability of a highly fragmented region of the Brazilian Atlantic Forest, one of the world's 25 recognized biodiversity hotspots, for forest bird species. Eight forest bird species were selected for the analyses, based on point counts (n = 122) conducted in April-September 2006 and January-March 2009. Six additional variables (landscape diversity, distance from forest and streams, aspect, elevation and slope) were modelled in Maxent for (1) actual and (2) simulated land cover, based on the forest expansion required by existing Brazilian forest legislation. Models were evaluated by bootstrap or jackknife methods and their performance was assessed by AUC, omission error, binomial probability or p value. All predictive models were statistically significant, with high AUC values and low omission errors. A small proportion of the actual landscape (24.41 +/- 6.31%) was suitable for forest bird species. The simulated landscapes lead to an increase of c. 30% in total suitable areas. In average, models predicted a small increase (23.69 +/- 6.95%) in the area of suitable native forest for bird species. Being close to forest increased the environmental suitability of landscapes for all bird species; landscape diversity was also a significant factor for some species. In conclusion, this study demonstrates that species distribution modelling (SDM) successfully predicted bird distribution across a heterogeneous landscape at fine spatial resolution, as all models were biologically relevant and statistically significant. The use of landscape variables as predictors contributed significantly to the results, particularly for species distributions over small extents and at fine scales. This is the first study to evaluate the environmental suitability of the remaining Brazilian Atlantic Forest for bird species in an agricultural landscape, and provides important additional data for regional environmental planning.
Resumo:
Litterfall and litter decomposition are vital processes in tropical forests because they regulate nutrient cycling. Nutrient cycling can be altered by forest fragmentation. The Atlantic Forest is one of the most threatened biomes in the world due to human occupation over the last 500 years. This scenario has resulted in fragments of different size, age and regeneration phase. To investigate differences in litterfall and leaf decomposition between forest successional phases, we compared six forest fragments at three different successional phases and an area of mature forest on the Atlantic Plateau of Sao Paulo, Brazil. We sampled litter monthly from November 2008 to October 2009. We used litterbags to calculate leaf decomposition rate of an exotic species, Tipuana tipu (Fabaceae), over the same period litter sampling was performed. Litterfall was higher in the earliest successional area. This pattern may be related to the structural properties of the forest fragments, especially the higher abundance of pioneer species, which have higher productivity and are typical of early successional areas. However, we have not found significant differences in the decomposition rates between the studied areas, which may be caused by rapid stabilization of the decomposition environment (combined effect of microclimatic conditions and the decomposers activities). This result indicates that the leaf decomposition process have already been restored to levels observed in mature forests after a few decades of regeneration, although litterfall has not been entirely restored. This study emphasizes the importance of secondary forests for restoration of ecosystem processes on a regional scale.
Resumo:
The identification of northern and southern components in different vertebrate species led researchers to accept a two-component hypothesis for the Brazilian Atlantic forest (BAF). Nevertheless, neither a formal proposal nor a meta-analysis to confirm this coincidence was ever made. Our main objective here was therefore to systematically test in how many vertebrate components the BAF could be divided by analysing existing empirical data. We used two approaches: (1) mapping and comparing the proposed areas of vertebrate endemism in the BAF and (2) analysing studies mentioning spatial subdivisions in distinct forest-dependent vertebrates within the biome, by the use of panbiogeography. The four large-scale endemism area components together with the six small-scale panbiogeographical ones allowed the definition of three BAF greater regions, subdivided into nine vertebrate components, latitudinally and longitudinally organized. Empirical time estimates of the diversification events within the BAF were also reviewed. Diversification of these vertebrates occurred not only in the Pleistocene but also throughout the Miocene. Our results confirm the BAF's complex history, both in space and time. We propose that future research should be small-scale and focused in the vertebrate components identified herein. Given the BAF's heterogeneity, studying via sections will be much more useful in identifying the BAF's historical biogeography. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107, 39-55.
Resumo:
Tropical forests are experiencing an increase in the proportion of secondary forests as a result of the balance between the widespread harvesting of old-growth forests and the regeneration in abandoned areas. The impacts of such a process on biodiversity are poorly known and intensely debated. Recent reviews and multi-taxa studies indicate that species replacement in wildlife assemblages is a consistent pattern, sometimes stronger than changes in diversity, with a replacement from habitat generalists to old-growth specialists being commonly observed during tropical forest regeneration. However, the ecological drivers of such compositional changes are rarely investigated, despite its importance in assessing the conservation value of secondary forests, and to support and guide management techniques for restoration. By sampling 28 sites in a continuous Atlantic forest area in Southeastern Brazil, we assessed how important aspects of habitat structure and food resources for wildlife change across successional stages, and point out hypotheses on the implications of these changes for wildlife recovery. Old-growth areas presented a more complex structure at ground level (deeper leaf litter, and higher woody debris volume) and higher fruit availability from an understorey palm, whereas vegetation connectivity, ground-dwelling arthropod biomass, and total fruit availability were higher in earlier successional stages. From these results we hypothetize that generalist species adapted to fast population growth in resource-rich environments should proliferate and dominate earlier successional stages, while species with higher competitive ability in resource-limited environments, or those that depend on resources such as palm fruits, on higher complexity at the ground level, or on open space for flying, should dominate older-growth forests. Since the identification of the drivers of wildlife recovery is crucial for restoration strategies, it is important that future work test and further develop the proposed hypotheses. We also found structural and functional differences between old-growth forests and secondary forests with more than 80 years of regeneration, suggesting that restoration strategies may be crucial to recover structural and functional aspects expected to be important for wildlife in much altered ecosystems, such as the Brazilian Atlantic forest. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Atlantic Forest is one of the most important biomes of Brazil. Originally covering approximately 1.5 million of km(2), today this area has been reduced to 12% of its original size. Climate changes may alter the structure and the functioning of this tropical forest. Here we explore how increases in temperature and changes in precipitation distribution could affect dynamics of carbon and nitrogen in coastal Atlantic Forest of the southeast region of Brazil The main conclusion of this article is that the coastal Atlantic Forest has high stocks of carbon and nitrogen above ground, and especially, below ground. An increase in temperature may transform these forests from important carbon sinks to carbon sources by increasing loss of carbon and nitrogen to the atmosphere. However, this conclusion should be viewed with caution because it is based on limited information. Therefore, more studies are urgently needed to enable us to make more accurate predictions.
Resumo:
Background: The most substantial and best preserved area of Atlantic Forest is within the biogeographical sub-region of Serra do Mar. The topographic complexity of the region creates a diverse array of microclimates, which can affect species distribution and diversity inside the forest. Given that Atlantic Forest includes highly heterogeneous environments, a diverse and medically important Culicidae assemblage, and possible species co-occurrence, we evaluated mosquito assemblages from bromeliad phytotelmata in Serra do Mar (southeastern Brazil). Methods: Larvae and pupae were collected monthly from Nidularium and Vriesea bromeliads between July 2008 and June 2009. Collection sites were divided into landscape categories (lowland, hillslope and hilltop) based on elevation and slope. Correlations between bromeliad mosquito assemblage and environmental variables were assessed using multivariate redundancy analysis. Differences in species diversity between bromeliads within each category of elevation were explored using the Renyi diversity index. Univariate binary logistic regression analyses were used to assess species co-occurrence. Results: A total of 2,024 mosquitoes belonging to 22 species were collected. Landscape categories (pseudo-F value = 1.89, p = 0.04), bromeliad water volume (pseudo-F = 2.99, p = 0.03) and bromeliad fullness (Pseudo-F = 4.47, p < 0.01) influenced mosquito assemblage structure. Renyi diversity index show that lowland possesses the highest diversity indices. The presence of An. homunculus was associated with Cx. ocellatus and the presence of An. cruzii was associated with Cx. neglectus, Cx. inimitabilis fuscatus and Cx. worontzowi. Anopheles cruzii and An. homunculus were taken from the same bromeliad, however, the co-occurrence between those two species was not statistically significant. Conclusions: One of the main findings of our study was that differences in species among mosquito assemblages were influenced by landscape characteristics. The bromeliad factor that influenced mosquito abundance and assemblage structure was fullness. The findings of the current study raise important questions about the role of An. homunculus in the transmission of Plasmodium in Serra do Mar, southeastern Atlantic Forest.
Resumo:
The Amazonian lowlands include large patches of open vegetation which contrast sharply with the rainforest, and the origin of these patches has been debated. This study focuses on a large area of open vegetation in northern Brazil, where d13C and, in some instances, C/N analyses of the organic matter preserved in late Quaternary sediments were used to achieve floristic reconstructions over time. The main goal was to determine when the modern open vegetation started to develop in this area. The variability in d13C data derived from nine cores ranges from -32.2 to -19.6 parts per thousand, but with nearly 60% of data above -26.5 parts per thousand. The most enriched values were detected only in ecotone and open vegetated areas. The development of open vegetation communities was asynchronous, varying between estimated ages of 6400 and 3000 cal a BP. This suggests that the origin of the studied patches of open vegetation might be linked to sedimentary dynamics of a late Quaternary megafan system. As sedimentation ended, this vegetation type became established over the megafan surface. In addition, the data presented here show that the presence of C4 plants must be used carefully as a proxy to interpret dry paleoclimatic episodes in Amazonian areas. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (< 40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha(-1) (range 6.6 to 112.4) to 8.0 Mg ha(-1) (-2.5 to 23.0).
Resumo:
A 30-year quantitative comparison of the bird community of a semideciduous forest remnant in the state of Sao Paulo. Few studies have evaluated long-term changes in avian abundance in forest remnants. To compare both species richness and abundance of the bird community in a forest fragment located in the municipality of Galia, state of Sao Paulo, southeastern Brazil, we surveyed forest birds using transect counts. We compared our results with a survey conducted 30 years earlier at the same locality and further classified bird species according to their food habits to eventually predict fluctuations of specific abundance. Although species with population declines predominated in the community, all trophic categories had species which increased their abundances. Most species prone to move around remnants decreased in abundance. We suggest that, regarding specific abundances, trophic categories may be equally affected as a result of fragmentation processes and that the forest regeneration of this remnant may have led to the loss of edge species. Species that suffered from abundance loss during this time period may become locally extinct in the near future.
Resumo:
The aim of this work is to use GIS integration data to characterize sedimentary processes in a SubTropical lagoon environment. The study area was the Canan,ia Inlet estuary in the southeastern section of the Canan,ia Lagoon Estuarine System (CLES), state of So Paulo, Brazil (25A degrees 03'S/47A degrees 53'W). The area is formed by the confluence of two estuarine channels forming a bay-shaped water body locally called "Trapand, Bay". The region is surrounded by one of the most preserved tracts of Atlantic Rain Forest in Southwestern Brazil and presents well-developed mangroves and marshes. In this study a methodology was developed using integrated a GIS database based on bottom sediment parameters, geomorphological data, remote sensing images, Hidrodynamical Modeling data and geophysical parameters. The sediment grain size parameters and the bottom morphology of the lagoon were also used to develop models of net sediment transport pathways. It was possible to observe that the sediment transport vectors based on the grain size model had a good correlation with the transport model based on the bottom topography features and Hydrodynamic model, especially in areas with stronger energetic conditions, with a minor contribution of finer sediments. This relation is somewhat less evident near shallower banks and depositional features. In these regions the organic matter contents in the sediments was a good complementary tool for inferring the hydrodynamic and depositional conditions (i.e. primary productivity, sedimentation rates, sources, oxi-reduction rates).