13 resultados para Rabbit retina
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
OBJECTIVES: Acute retinal necrosis is a rapidly progressive and devastating viral retinitis caused by the herpesvirus family. Systemic acyclovir is the treatment of choice; however, the progression of retinal lesions ceases approximately 2 days after treatment initiation. An intravitreal injection of acyclovir may be used an adjuvant therapy during the first 2 days of treatment when systemically administered acyclovir has not reached therapeutic levels in the retina. The aims of this study were to determine the pharmacokinetic profile of acyclovir in the rabbit vitreous after intravitreal injection and the functional effects of acyclovir in the rabbit retina. METHODS: Acyclovir (Acyclovir; Bedford Laboratories, Bedford, OH, USA) 1 mg in 0.1 mL was injected into the right eye vitreous of 32 New Zealand white rabbits, and 0.1 mL sterile saline solution was injected into the left eye as a control. The animals were sacrificed after 2, 9, 14, or 28 days. The eyes were enucleated, and the vitreous was removed. The half-life of acyclovir was determined using high-performance liquid chromatography. Electroretinograms were recorded on days 2, 9, 14, and 28 in the eight animals that were sacrificed 28 days after injection according to a modified protocol of the International Society for Clinical Electrophysiology of Vision. RESULTS: Acyclovir rapidly decayed in the vitreous within the first two days after treatment and remained at low levels from day 9 onward. The eyes that were injected with acyclovir did not present any electroretinographic changes compared with the control eyes. CONCLUSIONS: The vitreous half-life of acyclovir is short, and the electrophysiological findings suggest that the intravitreal delivery of 1 mg acyclovir is safe and well tolerated by the rabbit retina.
Resumo:
Purpose: To compare the intravitreal pharmacokinetic profile of a triamcinolone acetonide formulation containing the preservative benzyl alcohol (TA-BA) versus a preservative-free triamcinolone acetonide formulation (TA-PF), and evaluate potential signs of toxicity to the retina. Methods: A total of 60 New Zealand male white rabbits, divided into two groups, were studied. In the TA-BA group, 30 rabbits received an intravitreal injection of TA-BA (4 mg/0.1ml) into the right eye. In the TA-PF group, 30 rabbits received an intravitreal injection of TA-PF (4 mg/0.1ml) into the right eye. The intravitreal drug levels were determined in 25 animals from each group by high-performance liquid chromatography (HPLC). The potential for toxicity associated with the intravitreal triamcinolone injections was evaluated in five randomly selected animals from each group by electroretinography (ERG) and by light microscopy. Results: Median intravitreal concentrations of TA-BA (mu g/ml) were 1903.1, 1213.0, 857.8, 442.0, 248.6 at 3, 7, 14, 21 and 28 days after injection. Intravitreal concentrations of TA-PF (mu g/ml) were 1032.9, 570.1, 516.6, 347.9, 102.8 at 3, 7, 14, 21 and 28 days after injection. The median intravitreal triamcinolone concentration was significantly higher in the TA-BA compared to the TA-PF group at 7 days post-injection (p < 0.05). There was no significant difference between the two groups in median triamcinolone concentration at the other time points evaluated. There was no evidence of toxic effects on the retina in either group based on ERG or histological analyses. Conclusions: Following a single intravitreal injection, the median concentration of triamcinolone acetonide is significantly higher in the TA-BA compared to the TA-PF group at 7 days post-injection. No toxic reactions in the retina were observed in either group.
Resumo:
The turtle retina has been extensively used for the study of chromatic processing mechanisms. Color opponency has been previously investigated with trichromatic paradigms, but behavioral studies show that the turtle has ail ultraviolet (UV) channel and a tetrachromatic visual system. Our laboratory has been working ill the characterization of neuronal responses in the retina of vertebrates using stimuli in the UV-visible range of the electromagnetic spectrum. In the present investigation, we recorded color-opponent responses from turtle amacrine and ganglion cells to UV and visible stimuli and extended our previous results that UV color-opponency is present at the level of the inner nuclear layer. We recorded from 181 neurons, 36 of which were spectrally opponent. Among these, there were 10 amacrine (5%), and 26 ganglion cells (15%). Morphological identification of color-opponent neurons was possible for two ganglion cell classes (G17 and G22) and two amacrine cell classes (A22 and A23b). There was a variety of cell response types and a potential for complex processing of chromatic stimuli, with intensity- and wavelength-dependent response components. Ten types of color opponency were found in ganglion cells and by adding previous results from our laboratory, 12 types of opponent responses have been found. The majority of the ganglion cells were R+UVBG- and RG+UVB-color-opponents but there were other less frequent types of chromatic opponency. This study confirms the participation of a UV channel in the processing of color opponency in the turtle inner retina and shows that the turtle visual system has the retinal mechanisms to allow many possible chromatic combinations.
Resumo:
Many animal species make use of ultraviolet (UV) light in a number of behaviors, such as feeding and mating. The goldfish (Carassius auratus) is among those with a UV photoreceptor and pronounced UV sensitivity. Little is known, however, about the retinal processing of this input. We addressed this issue by recording intracellularly from second-order neurons in the adult goldfish retina. In order to test whether cone-driven horizontal cells (HCs) receive UV cone inputs, we performed chromatic adaptation experiments with mono- and biphasic HCs. We found no functional evidence of a projection from the UV-sensitive cones to these neurons in adult animals. This suggests that goldfish UV receptors may contact preferentially triphasic HCs, which is at odds with the hypothesis that all cones contact all cone-driven HC types. However, we did find evidence of direct M-cone input to monophasic HCs, favoring the idea that cone-HC contacts are more promiscuous than originally proposed. Together, our results suggest that either UV cones have a more restricted set of post-synaptic partners than the other three cone types, or that the UV input to mono- and biphasic HCs is not very pronounced in adult animals.
Resumo:
How is the corneal epithelium restored when all of it plus the limbus have been eliminated? This investigation explored the possibility that this may be achieved through the conjunctival epithelium. The corneal epithelium of the right eye of 12 rabbits (Oryctolagus cuniculus) was totally scraped followed by surgical excision of the limbus plus 1.0-1.5 mm of the adjacent conjunctiva. Antibiotics and corticosteroids were applied for 1 week after surgery. Histological and immunohistochemical techniques were used to monitor the events taking place on the eye surface 2 weeks and 1, 3 and 6 months thereafter. Initially, the corneal surface was covered by conjunctival-like epithelium. After 1 month and more prominently at 3 and 6 months an epithelium displaying the morphological features of the cornea and reacting with the AE5 antibody was covering the central region. It is likely that the corneal epithelium originated from undifferentiated cells of the conjunctiva interacting with the corneal stroma.
Resumo:
Oxidative stress and mitochondrial impairment are essential in the ischemic stroke cascade and eventually lead to tissue injury. C-Phycocyanin (C-PC) has previously been shown to have strong antioxidant and neuroprotective actions. In the present study, we assessed the effects of C-PC on oxidative injury induced by tert-butylhydroperoxide (t-BOOH) in SH-SY5Y neuronal cells, on transient ischemia in rat retinas, and in the calcium/phosphate-induced impairment of isolated rat brain mitochondria (RBM). In SH-SY5Y cells, t-BOOH induced a significant reduction of cell viability as assessed by an MTT assay, and the reduction was effectively prevented by treatment with C-PC in the low micromolar concentration range. Transient ischemia in rat retinas was induced by increasing the intraocular pressure to 120 mmHg for 45 min, which was followed by 15 min of reperfusion. This event resulted in a cell density reduction to lower than 50% in the inner nuclear layer (INL), which was significantly prevented by the intraocular pre-treatment with C-PC for 15 min. In the RBM exposed to 3 mM phosphate and/or 100 mu M Ca2+, C-PC prevented in the low micromolar concentration range, the mitochondrial permeability transition as assessed by mitochondrial swelling, the membrane potential dissipation, the increase of reactive oxygen species levels and the release of the pro-apoptotic cytochrome c. In addition, C-PC displayed a strong inhibitory effect against an electrochemically-generated Fenton reaction. Therefore, C-PC is a potential neuroprotective agent against ischemic stroke, resulting in reduced neuronal oxidative injury and the protection of mitochondria from impairment. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions.
Resumo:
Diclofenac sodium (DS) is a non-steroidal anti-inflammatory drug that is widely prescribed for the treatment of rheumatoid arthritis and post-surgery analgesia. The active pharmaceutical ingredient is the anhydrous form; however, it can also exist in hydrate form. In this context, knowing the properties of the solid state is important and relevant in the pharmaceutical area because they have a significant impact on the solubility, bioavailability, and chemical stability of the drugs. In the present study, data from XRPD, FTIR spectroscopy, and thermal analysis were used for the identification and characterization of DS forms (anhydrous and hydrate). An HPLC method was optimized to evaluate the plasma concentration of DS in rabbits. The optimized method exhibited good linearity over the range 0.1-60 mu g/mL with correlation coefficients of >0.9991. The mean recovery was 100%. Precision and accuracy were determined within acceptable limits. Finally, to compare the pharmacological properties of anhydrous and hydrate DS forms, we investigated their effects in the febrile response induced by lipopolysaccharide from E. coli in rabbits. The results show that the antipyretic effect of anhydrous and hydrate DS forms are similar.
Resumo:
OBJECTIVES: The clinical significance of ischemia/reperfusion of the lower extremities demands further investigation to enable the development of more effective therapeutic alternatives. This study investigated the changes in the vascular reactivity of the rabbit femoral artery and nitric oxide metabolites under partial ischemia/reperfusion conditions following cilostazol administration. METHODS: Ischemia was induced using infrarenal aortic clamping. The animals were randomly divided into seven groups: Control 90 minutes, Ischemia/Reperfusion 90/60 minutes, Control 120 minutes, Ischemia/Reperfusion 120/90 minutes, Cilostazol, Cilostazol before Ischemia/Reperfusion 120/90 minutes, and Ischemia 120 minutes/Cilostazol/Reperfusion 90 minutes. Dose-response curves for sodium nitroprusside, acetylcholine, and the calcium ionophore A23187 were obtained in isolated femoral arteries. The levels of nitrites and nitrates in the plasma and skeletal muscle were determined using chemiluminescence. RESULTS: Acetylcholine- and A23187-induced relaxation was reduced in the Ischemia/Reperfusion 120/90 group, and treatment with cilostazol partially prevented this ischemia/reperfusion-induced endothelium impairment. Only cilostazol treatment increased plasma levels of nitrites and nitrates. An elevation in the levels of nitrites and nitrates was observed in muscle tissues in the Ischemia/Reperfusion 120/90, Cilostazol/Ischemia/Reperfusion, and Ischemia/Cilostazol/Reperfusion groups. CONCLUSION: Hind limb ischemia/reperfusion yielded an impaired endothelium-dependent relaxation of the femoral artery. Furthermore, cilostazol administration prior to ischemia exerted a protective effect on endothelium-dependent vascular reactivity under ischemia/reperfusion conditions.
Resumo:
Objectives: Chronic right ventricular (RV) pressure overload results in pathologic RV hypertrophy and diminished RV function. Although aortic constriction has been shown to improve systolic function in acute RV failure, its effect on RV responses to chronic pressure overload is unknown. Methods: Adjustable vascular banding devices were placed on the main pulmonary artery and descending aorta. In 5 animals (sham group), neither band was inflated. In 9 animals (PAB group), only the pulmonary arterial band was inflated, with adjustments on a weekly basis to generate systemic or suprasystemic RV pressure at 28 days. In 9 animals, both pulmonary arterial and aortic devices were inflated (PAB+AO group), the pulmonary arterial band as for the PAB group and the aortic band adjusted to increase proximal systolic blood pressure by approximately 20 mm Hg. Effects on the functional performance were assessed 5 weeks after surgery by conductance catheters, followed by histologic and molecular assessment. Results: Contractile performance was significantly improved in the PAB+AO group versus the PAB group for both ventricles. Relative to sham-operated animals, both banding groups showed significant differences in myocardial histologic and molecular responses. Relative to the PAB group, the PAB+AO group showed significantly decreased RV cardiomyocyte diameter, decreased RV collagen content, and reduced RV expression of endothelin receptor type B, matrix metalloproteinase 9, and transforming growth factor beta genes. Conclusions: Aortic constriction in an experimental model of chronic RV pressure overload not only resulted in improved biventricular systolic function but also improved myocardial remodeling. These data suggest that chronically increased left ventricular afterload leads to a more physiologically hypertrophic response in the pressure-overloaded RV. (J Thorac Cardiovasc Surg 2012;144:1494-501)
Resumo:
The visual system is particularly sensitive to methylmercury (MeHg) exposure and, therefore, provides a useful model for investigating the fundamental mechanisms that direct toxic effects. During a period of 70 days, adult of a freshwater fish species Hoplias malabaricus were fed with fish prey previously labeled with two different doses of methylmercury (0.075 and 0.75 mu g g(-1)) to determine the mercury distribution and morphological changes in the retina. Mercury deposits were found in the photoreceptor layer, in the inner plexiform layer and in the outer plexiform layer, demonstrating a dose-dependent bioaccumulation. The ultrastructure analysis of retina revealed a cellular deterioration in the photoreceptor layer, morphological changes in the inner and outer segments of rods, structural changes in the plasma membrane of rods and double cones, changes in the process of removal of membranous discs and a structural discontinuity. These results lead to the conclusion that methylmercury is able to cross the blood-retina barrier, accumulate in the cells and layers of retina and induce changes in photoreceptors of H. malabaricus even under subchronic exposure. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Objectives/Hypothesis. Hepatocyte growth factor (HGF) is a multifunctional polypeptide that plays various roles in embryogenesis and tissue regeneration and exhibits marked antifibrotic activity. The present study sought to assess the effects of HGF injection and reinjection coinciding with its peak of activity on collagen density, vessel density, inflammatory reaction in the lamina propria, and mean epithelial thickness in the injured rabbit vocal fold. Study Design. Prospective, controlled, experimental animal study. Methods. Fourteen rabbits were subdivided into two groups and underwent injury of the vocal folds. Immediately after injury, animals in group 1 received HGF injections into the right vocal fold (RVF), whereas those in group 2 received bilateral HGF injections and a single reinjection into the RVF 10 days after the first, to coincide with the peak of HGF activity. The left vocal folds (LVFs) served as controls in both groups. Histological assessment of laryngeal specimens was performed at 30 and 40 days, respectively. Results. In both groups, collagen density was lower in the right (treated) vocal folds than in the left (control) folds (P = 0.018). Vessel density was higher in the RVFs in group 2 (P = 0.018). Differences were found in mean epithelial thickness and inflammatory reaction in the lamina propria but did not reach statistical significance. Conclusions. In the scarred rabbit vocal fold, HGF injection is associated with decreased collagen density in the lamina propria, whereas reinjection after 10 days produces decreased collagen density and higher vessel density.
Resumo:
PURPOSE. Vascular endothelial growth factor (VEGF) is an important signal protein in vertebrate nervous development, promoting neurogenesis, neuronal patterning, and glial cell growth. Bevacizumab, an anti-VEGF agent, has been extensively used for controlling pathological retinal neovascularization in adult and newborn patients, although its effect on the developing retina remains largely unknown. The purpose of this study was to investigate the effect of bevacizumab on cell death, proliferation, and differentiation in newborn rat retina. METHODS. Retinal explants of sixty 2-day-old Lister hooded rats were obtained after eye enucleation and maintained in culture media with or without bevacizumab for 2 days. Immunohistochemical staining was assessed against proliferating cell nuclear antigen (PCNA, to detect cell proliferation); caspase-3 and beclin-1 (to investigate cell death); and vimentin and glial fibrillary acidic protein (GFAP, markers of glial cells). Gene expressions were quantified by real-time reverse-transcription polymerase chain reaction. Results from treatment and control groups were compared. RESULTS. No significant difference in the staining intensity (on immunohistochemistry) of PCNA, caspase-3, beclin-1, and GFAP, or in the levels of PCNA, caspase-3, beclin-1, and vimentin mRNA was observed between the groups. However, a significant increase in vimentin levels and a significant decrease in GFAP mRNA expression were observed in bevacizumab-treated retinal explants compared with controls. CONCLUSIONS. Bevacizumab did not affect cell death or proliferation in early developing rat retina but appeared to interfere with glial cell maturation by increasing vimentin levels and downregulating GFAP gene expression. Thus, we suggest anti-VEGF agents be used with caution in developing retinal tissue. (Invest Ophthalmol Vis Sci. 2012;53:7904-7911) DOI:10.1167/iovs.12-10283