2 resultados para RNase E
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.
Resumo:
Abstract Background The gene coding for the uncharacterized protein PAB1135 in the archaeon Pyrococcus abyssi is in the same operon as the ribonuclease P (RNase P) subunit Rpp30. Findings Here we report the expression, purification and structural analysis of PAB1135. We analyzed the interaction of PAB1135 with RNA and show that it binds efficiently double-stranded RNAs in a non-sequence specific manner. We also performed molecular modeling of the PAB1135 structure using the crystal structure of the protein Af2318 from Archaeoglobus fulgidus (2OGK) as the template. Conclusions Comparison of this model has lead to the identification of a region in PAB1135 that could be involved in recognizing double-stranded RNA.