21 resultados para RNA Polimerasa

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular integration of nutrient-and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of kappa B kinase beta. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of kappa B kinase beta phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity. (Endocrinology 153:5261-5274, 2012)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleoli, nuclear organelles in which ribosomal RNA is synthesized and processed, emerge from nucleolar organizers (NORs) located in distinct chromosomal regions. In polytene nuclei of dipterans, nucleoli of some species can be observed under light microscopy exhibiting distinctive morphology: Drosophila and chironomid species display well-formed nucleoli in contrast to the fragmented and dispersed nucleoli seen in sciarid flies. The available data show no apparent relationship between nucleolar morphology and location of NORs in Diptera. The regulation of rRNA transcription involves controlling both the transcription rate per gene as well as the proportion of rRNA genes adopting a proper chromatin structure for transcription, since active and inactive rRNA gene copies coexist in NORs. Transcription units organized in nucleosomes and those lacking canonical nucleosomes can be analyzed by the method termed psoralen gel retarding assay (PGRA), allowing inferences on the ratio of active to inactive rRNA gene copies. In this work, possible connections between chromosomal location of NORs and proportion of active rRNA genes were studied in Drosophila melanogaster, and in chironomid and sciarid species. The data suggested a link between location of NORs and proportion of active rRNA genes since the copy number showing nucleosomal organization predominates when NORs are located in the pericentric heterochromatin. The results presented in this work are in agreement with previous data on the chromatin structure of rRNA genes from distantly related eukaryotes, as assessed by the PGRA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The preservation of biological samples at a low temperature is important for later biochemical and/or histological analyses. However, the molecular viability of thawed samples has not been studied sufficiently in depth. The present study was undertaken to evaluate the viability of intact tissues, tissue homogenates, and isolated total RNA after defrosting for more than twenty-four hours. METHODS: The molecular viability of the thawed samples (n = 82) was assessed using the A260/A280 ratio, the RNA concentration, the RNA integrity, the level of intact mRNA determined by reverse transcriptase polymerase chain reaction, the protein level determined by Western blotting, and an examination of the histological structure. RESULTS: The integrity of the total RNA was not preserved in the thawed intact tissue, but the RNA integrity and level of mRNA were perfectly preserved in isolated defrosted samples of total RNA. Additionally, the level of beta-actin protein was preserved in both thawed intact tissue and homogenates. CONCLUSION: Isolated total RNA does not undergo degradation due to thawing for at least 24 hours, and it is recommended to isolate the total RNA as soon as possible after tissue collection. Moreover, the protein level is preserved in defrosted tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sugarcane root endophyte Trichoderma virens 223 holds enormous potential as a sustainable alternative to chemical pesticides in the control of sugarcane diseases. Its efficacy as a biocontrol agent is thought to be associated with its production of chitinase enzymes, including N-acetyl-beta-D-glucosaminidases, chitobiosidases and endochitinases. We used targeted gene deletion and RNA-dependent gene silencing strategies to disrupt N-acetyl-beta-D-glucosaminidase and endochitinase activities of the fungus, and to determine their roles in the biocontrol of soil-borne plant pathogens. The loss of N-acetyl-beta-D-glucosaminidase activities was dispensable for biocontrol of the plurivorous damping-off pathogens Rhizoctonia solani and Sclerotinia sclerotiorum, and of the sugarcane pathogen Ceratocystis paradoxa, the causal agent of pineapple disease. Similarly, suppression of endochitinase activities had no effect on R. solani and S. sclerotiorum disease control, but had a pronounced effect on the ability of T. virens 223 to control pineapple disease. Our work demonstrates a critical requirement for T. virens 223 endochitinase activity in the biocontrol of C. paradoxa sugarcane disease, but not for general antagonism of other soil pathogens. This may reflect its lifestyle as a sugarcane root endophyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of a capped mini-exon [spliced leader (SL)] through trans-splicing is essential for the maturation of RNA polymerase (pol) II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA) are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS) region. Additionally, we detected the SL-5' ETS molecule using three distinct methods and located the acceptor site between two known 5' ETS rRNA processing sites (A' and A1) in four different trypanosomatids. Moreover, we detected a polyadenylated 5' ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin), we observed SL-5' ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA) led to the accumulation of SL-5' ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sepsis and septic shock are associated with cardiac depression. Cardiovascular instability is a major cause of death in patients with sepsis. Focal adhesion kinase (FAK) is a potential mediator of cardiomyocyte responses to oxidative and mechanical stress. Myocardial collagen deposition can affect cardiac compliance and contractility. The aim of the present study was to determine whether the silencing of FAK is protective against endotoxemia-induced alterations of cardiac structure and function. In male Wistar rats, endotoxemia was induced by intraperitoneal injection of lipopolysaccharide (10 mg/kg). Cardiac morphometry and function were studied in vivo by left ventricular catheterization and histology. Intravenous injection of small interfering RNA targeting FAK was used to silence myocardial expression of the kinase. The hearts of lipopolysaccharide-injected rats showed collagen deposition, increased matrix metalloproteinase 2 activity, and myocyte hypertrophy, as well as reduced 24-h +dP/dt and -dP/dt, together with hypotension, increased left ventricular end-diastolic pressure, and elevated levels of FAK (phosphorylated and unphosphorylated). Focal adhesion kinase silencing reduced the expression and activation of the kinase in cardiac tissue, as well as protecting against the increased collagen deposition, greater matrix metalloproteinase 2 activity, and reduced cardiac contractility that occur during endotoxemia. In conclusion, FAK is activated in endotoxemia, playing a role in cardiac remodeling and in the impairment of cardiac function. This kinase represents a potential therapeutic target for the protection of cardiac function in patients with sepsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-17A (IL-17A) is a proinflamatory cytokine that plays an important role in fighting pathogens at mucosal interfaces, by summoning neutrophils and upregulating cytoplasmatic antimicrobial peptides. So far, the presence of IL-17A in leprosy has not been demonstrated. The expression of IL-17A and related cytokines (IL-6 and IL-23p19) was addressed through RNA extraction and cDNA quantitative amplification in macerated biopsies of active lesions of 48 leprosy patients and 20 fragments of normal skin of individuals. Blood levels of IL-17A, IL-23p19 and IL-6 were determined by ELISA. We found an abrogated mRNA IL-17A response in all biopsies of leprosy patients, as compared with controls. Circulating IL-17A and IL-23p19 were undetectable in both patients and controls, but IL-6 was higher in lepromatous patients. Although at low levels, IL-17A mRNA in lepromatous patients had an inverse linear correlation with bacillary burden. Low expression of IL-17A in patients may be a constitutive genetic feature of leprosy patients or a circumstantial event induced by the local presence of the pathogen, as an escape mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schistosoma mansoni is one of the agents of schistosomiasis, a chronic and debilitating disease. Here we, present a transcriptome-wide characterization of adult S. mansoni males by high-throughput RNA-sequencing. We obtained 1,620,432 high-quality ESTs from a directional strand-specific cDNA library, resulting in a 26% higher coverage of genome bases than that of the public ESTs available at NCBI. With a 15 x-deep coverage of transcribed genomic regions, our data were able to (i) confirm for the first time 990 predictions without previous evidence of transcription; (ii) correct gene predictions; (iii) discover 989 and 1196 RNA-seq contigs that map to intergenic and intronic genomic regions, respectively, where no gene had been predicted before. These contigs could represent new protein-coding genes or non-coding RNAs (ncRNAs). Interestingly, we identified 11 novel Micro-exon genes (MEGs). These data reveal new features of the S. mansoni transcriptional landscape and significantly advance our understanding of the parasite transcriptome. (c) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embryonic carcinoma cells are widely used models for studying the mechanisms of proliferation and differentiation occurring during early embryogenesis. We have now investigated how down-regulation of P2X2 and P2X7 receptor expression by RNA interference (RNAi) affects neural differentiation and phenotype specification of P19 embryonal carcinoma cells. Wild-type P19 embryonal carcinoma cells or cells stably expressing shRNAs targeting P2X2 or P2X7 receptor expression were induced to differentiate into neurons and glial cells in the presence of retinoic acid. Silencing of P2X2 receptor expression along differentiation promoted cell proliferation and an increase in the percentage of cells expressing glial-specific GFAP, while the presence of beta-3 tubulin-positive cells diminished at the same time. Proliferation induction in the presence of stable anti-P2X2 receptor RNAi points at a mechanism where glial proliferation is favored over growth arrest of progenitor cells which would allow neuronal maturation. Differently from the P2X2 receptor, inhibition of P2X7 receptor expression during neural differentiation of P19 cells resulted in a decrease in cell proliferation and GFAP expression, suggesting the need of functional P2X7 receptors for the progress of gliogenesis. The results obtained in this study indicate the importance of purinergic signaling for cell fate determination during neural differentiation, with P2X2 and P2X7 receptors promoting neurogenesis and gliogenesis, respectively. The shRNAs down-regulating P2X2 or P2X7 receptor gene expression, developed during this work, present useful tools for studying mechanisms of neural differentiation in other stem cell models. (C) 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background The thymus is a central lymphoid organ, in which bone marrow-derived T cell precursors undergo a complex process of maturation. Developing thymocytes interact with thymic microenvironment in a defined spatial order. A component of thymic microenvironment, the thymic epithelial cells, is crucial for the maturation of T-lymphocytes through cell-cell contact, cell matrix interactions and secretory of cytokines/chemokines. There is evidence that extracellular matrix molecules play a fundamental role in guiding differentiating thymocytes in both cortical and medullary regions of the thymic lobules. The interaction between the integrin α5β1 (CD49e/CD29; VLA-5) and fibronectin is relevant for thymocyte adhesion and migration within the thymic tissue. Our previous results have shown that adhesion of thymocytes to cultured TEC line is enhanced in the presence of fibronectin, and can be blocked with anti-VLA-5 antibody. Results Herein, we studied the role of CD49e expressed by the human thymic epithelium. For this purpose we knocked down the CD49e by means of RNA interference. This procedure resulted in the modulation of more than 100 genes, some of them coding for other proteins also involved in adhesion of thymocytes; others related to signaling pathways triggered after integrin activation, or even involved in the control of F-actin stress fiber formation. Functionally, we demonstrated that disruption of VLA-5 in human TEC by CD49e-siRNA-induced gene knockdown decreased the ability of TEC to promote thymocyte adhesion. Such a decrease comprised all CD4/CD8-defined thymocyte subsets. Conclusion Conceptually, our findings unravel the complexity of gene regulation, as regards key genes involved in the heterocellular cell adhesion between developing thymocytes and the major component of the thymic microenvironment, an interaction that is a mandatory event for proper intrathymic T cell differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Some organisms can survive extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living mycophagous nematode Aphelenchus avenae can be induced to enter anhydrobiosis by pre-exposure to moderate reductions in relative humidity (RH) prior to extreme desiccation. This preconditioning phase is thought to allow modification of the transcriptome by activation of genes required for desiccation tolerance. Results To identify such genes, a panel of expressed sequence tags (ESTs) enriched for sequences upregulated in A. avenae during preconditioning was created. A subset of 30 genes with significant matches in databases, together with a number of apparently novel sequences, were chosen for further study. Several of the recognisable genes are associated with water stress, encoding, for example, two new hydrophilic proteins related to the late embryogenesis abundant (LEA) protein family. Expression studies confirmed EST panel members to be upregulated by evaporative water loss, and the majority of genes was also induced by osmotic stress and cold, but rather fewer by heat. We attempted to use RNA interference (RNAi) to demonstrate the importance of this gene set for anhydrobiosis, but found A. avenae to be recalcitrant with the techniques used. Instead, therefore, we developed a cross-species RNAi procedure using A. avenae sequences in another anhydrobiotic nematode, Panagrolaimus superbus, which is amenable to gene silencing. Of 20 A. avenae ESTs screened, a significant reduction in survival of desiccation in treated P. superbus populations was observed with two sequences, one of which was novel, while the other encoded a glutathione peroxidase. To confirm a role for glutathione peroxidases in anhydrobiosis, RNAi with cognate sequences from P. superbus was performed and was also shown to reduce desiccation tolerance in this species. Conclusions This study has identified and characterised the expression profiles of members of the anhydrobiotic gene set in A. avenae. It also demonstrates the potential of RNAi for the analysis of anhydrobiosis and provides the first genetic data to underline the importance of effective antioxidant systems in metazoan desiccation tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background The development of protocols for RNA extraction from paraffin-embedded samples facilitates gene expression studies on archival samples with known clinical outcome. Older samples are particularly valuable because they are associated with longer clinical follow up. RNA extracted from formalin-fixed paraffin-embedded (FFPE) tissue is problematic due to chemical modifications and continued degradation over time. We compared quantity and quality of RNA extracted by four different protocols from 14 ten year old and 14 recently archived (three to ten months old) FFPE breast cancer tissues. Using three spin column purification-based protocols and one magnetic bead-based protocol, total RNA was extracted in triplicate, generating 336 RNA extraction experiments. RNA fragment size was assayed by reverse transcription-polymerase chain reaction (RT-PCR) for the housekeeping gene glucose-6-phosphate dehydrogenase (G6PD), testing primer sets designed to target RNA fragment sizes of 67 bp, 151 bp, and 242 bp. Results Biologically useful RNA (minimum RNA integrity number, RIN, 1.4) was extracted in at least one of three attempts of each protocol in 86–100% of older and 100% of recently archived ("months old") samples. Short RNA fragments up to 151 bp were assayable by RT-PCR for G6PD in all ten year old and months old tissues tested, but none of the ten year old and only 43% of months old samples showed amplification if the targeted fragment was 242 bp. Conclusion All protocols extracted RNA from ten year old FFPE samples with a minimum RIN of 1.4. Gene expression of G6PD could be measured in all samples, old and recent, using RT-PCR primers designed for RNA fragments up to 151 bp. RNA quality from ten year old FFPE samples was similar to that extracted from months old samples, but quantity and success rate were generally higher for the months old group. We preferred the magnetic bead-based protocol because of its speed and higher quantity of extracted RNA, although it produced similar quality RNA to other protocols. If a chosen protocol fails to extract biologically useful RNA from a given sample in a first attempt, another attempt and then another protocol should be tried before excluding the case from molecular analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background The ability to manipulate the genetic networks underlying the physiological and behavioural repertoires of the adult honeybee worker (Apis mellifera) is likely to deepen our understanding of issues such as learning and memory generation, ageing, and the regulatory anatomy of social systems in proximate as well as evolutionary terms. Here we assess two methods for probing gene function by RNA interference (RNAi) in adult honeybees. Results The vitellogenin gene was chosen as target because its expression is unlikely to have a phenotypic effect until the adult stage in bees. This allowed us to introduce dsRNA in preblastoderm eggs without affecting gene function during development. Of workers reared from eggs injected with dsRNA derived from a 504 bp stretch of the vitellogenin coding sequence, 15% had strongly reduced levels of vitellogenin mRNA. When dsRNA was introduced by intra-abdominal injection in newly emerged bees, almost all individuals (96 %) showed the mutant phenotype. An RNA-fragment with an apparent size similar to the template dsRNA was still present in this group after 15 days. Conclusion Injection of dsRNA in eggs at the preblastoderm stage seems to allow disruption of gene function in all developmental stages. To dissect gene function in the adult stage, the intra-abdominal injection technique seems superior to egg injection as it gives a much higher penetrance, it is much simpler, and it makes it possible to address genes that are also expressed in the embryonic, larval or pupal stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Myelodysplastic syndromes (MDS) are a group of clonal hematological disorders characterized by ineffective hematopoiesis with morphological evidence of marrow cell dysplasia resulting in peripheral blood cytopenia. Microarray technology has permitted a refined high-throughput mapping of the transcriptional activity in the human genome. Non-coding RNAs (ncRNAs) transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression, and in the regulation of exon-skipping and intron retention. Characterization of ncRNAs in progenitor cells and stromal cells of MDS patients could be strategic for understanding gene expression regulation in this disease. Methods In this study, gene expression profiles of CD34+ cells of 4 patients with MDS of refractory anemia with ringed sideroblasts (RARS) subgroup and stromal cells of 3 patients with MDS-RARS were compared with healthy individuals using 44 k combined intron-exon oligoarrays, which included probes for exons of protein-coding genes, and for non-coding RNAs transcribed from intronic regions in either the sense or antisense strands. Real-time RT-PCR was performed to confirm the expression levels of selected transcripts. Results In CD34+ cells of MDS-RARS patients, 216 genes were significantly differentially expressed (q-value ≤ 0.01) in comparison to healthy individuals, of which 65 (30%) were non-coding transcripts. In stromal cells of MDS-RARS, 12 genes were significantly differentially expressed (q-value ≤ 0.05) in comparison to healthy individuals, of which 3 (25%) were non-coding transcripts. Conclusions These results demonstrated, for the first time, the differential ncRNA expression profile between MDS-RARS and healthy individuals, in CD34+ cells and stromal cells, suggesting that ncRNAs may play an important role during the development of myelodysplastic syndromes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background The gene coding for the uncharacterized protein PAB1135 in the archaeon Pyrococcus abyssi is in the same operon as the ribonuclease P (RNase P) subunit Rpp30. Findings Here we report the expression, purification and structural analysis of PAB1135. We analyzed the interaction of PAB1135 with RNA and show that it binds efficiently double-stranded RNAs in a non-sequence specific manner. We also performed molecular modeling of the PAB1135 structure using the crystal structure of the protein Af2318 from Archaeoglobus fulgidus (2OGK) as the template. Conclusions Comparison of this model has lead to the identification of a region in PAB1135 that could be involved in recognizing double-stranded RNA.