4 resultados para RISK MAPPING
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Dengue fever is a mosquito-borne viral disease estimated to cause about 230 million infections worldwide every year, of which 25,000 are fatal. Global incidence has risen rapidly in recent decades with some 3.6 billion people, over half of the world's population, now at risk, mainly in urban centres of the tropics and subtropics. Demographic and societal changes, in particular urbanization, globalization, and increased international travel, are major contributors to the rise in incidence and geographic expansion of dengue infections. Major research gaps continue to hamper the control of dengue. The European Commission launched a call under the 7th Framework Programme with the title of 'Comprehensive control of Dengue fever under changing climatic conditions'. Fourteen partners from several countries in Europe, Asia, and South America formed a consortium named 'DengueTools' to respond to the call to achieve better diagnosis, surveillance, prevention, and predictive models and improve our understanding of the spread of dengue to previously uninfected regions (including Europe) in the context of globalization and climate change. The consortium comprises 12 work packages to address a set of research questions in three areas: Research area 1: Develop a comprehensive early warning and surveillance system that has predictive capability for epidemic dengue and benefits from novel tools for laboratory diagnosis and vector monitoring. Research area 2: Develop novel strategies to prevent dengue in children. Research area 3: Understand and predict the risk of global spread of dengue, in particular the risk of introduction and establishment in Europe, within the context of parameters of vectorial capacity, global mobility, and climate change. In this paper, we report on the rationale and specific study objectives of 'DengueTools'. DengueTools is funded under the Health theme of the Seventh Framework Programme of the European Community, Grant Agreement Number: 282589 Dengue Tools.
Resumo:
In the city of Sao Paulo, where about 11 million people live, landslides and flooding occur frequently, especially during the summer. These landslides cause the destruction of houses and urban equipment, economic damage, and the loss of lives. The number of areas threatened by landslides has been increasing each year. The objective of this article is to analyze the probability of risk and susceptibility to shallow landslides in the Limoeiro River basin, which is located at the head of the Aricanduva River basin, one of the main hydrographic basins in the city of Sao Paulo. To map areas of risk, we created a cadastral survey form to evaluate landslide risk in the field. Risk was categorized into four levels based on natural and anthropogenic factors: R1 (low risk), R2 (average risk), R3 (high risk), and R4 (very high risk). To analyze susceptibility to shallow landslides, we used the SHALSTAB (Shallow Landsliding Stability) mathematical model and calculated the Distribution Frequency (DF) of the susceptibility classes for the entire basin. Finally, we performed a joint analysis of the average Risk Concentration (RC) and Risk Potential (RP). We mapped 14 risk sectors containing approximately 685 at-risk homes, more than half of which presented a high (R3) or very high (R4) probability of risk to the population. In the susceptibility map, 41% of the area was classified as stable and 20% as unconditionally unstable. Although the latter category accounted a smaller proportion of the total area, it contained a concentration (RC) of 41% of the mapped risk areas with a risk potential (RP) of 12%. We found that the locations of areas predicted to be unstable by the model coincided with the risk areas mapped in the field. This combination of methods can be applied to evaluate the risk of shallow landslides in densely populated areas and can assist public managers in defining areas that are unstable and inappropriate for occupation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The rapid industrial development and disorganized population growth in huge cities bring about various urban problems due to intense use of physical space on and below the surface. Subsurface problems in metropolitan areas are caused by subway line construction, which often follows the routes of utility networks, such as electric and telephone cables, water and gas pipes, storm sewers, etc. Usually, the main problems are related to damage or destruction of preexisting utilities, often putting human lives at risk. With the purpose of minimizing risks. GPR-profiling with 200 MHz antennae was done at two sites, both located in downtown Sao Paulo, Brazil. The objectives of this work were to map utilities or existing infrastructure in the subsurface in order to orient the construction of the Line 4 (yellow) subway tunnel in Sao Paulo. GPR profiles can detect water pipes, utility networks in the subsurface, and concrete foundation columns or pilings in subsoil up to 2 m depth. In addition. the GPR profiles also provided details of the target shapes in the subsurface. GPR interpretations combined with lithological information from boreholes and trenches opened in the study areas were extremely important in mapping of the correct spatial distribution of buried utilities at these two sites in Sao Paulo. This information improves and updates maps of utility placement, serves as a basis for planning of the geotechnical excavation of the Line 4 (yellow) subway tunnel in Sao Paulo, helps minimize problems related to destruction of preexisting utilities in the subsoil, and avoids risk of dangerous accidents. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Traceability is a concept that arose from the need for monitoring of production processes, this concept is usually used in sectors related to food production or activities involving some kind of direct risk to people. Agribusiness in the cotton industry does not have a comprehensive infrastructure for all stages of the processes involved in production. Map and define the data to enable traceability of products is synonymous to delegate responsibilities for all involved in the production, the collection of aggregate data on cotton production is done in stages and specific pre-defined since the choice of the variety through the processing, the scope of this article specifically addresses the production of lint cotton. The paper presents a proposal based on service oriented architecture (SOA) for data integration processes in the cotton industry, this proposal provide support for the implementation of platform independent solutions.