4 resultados para Quantum harmonic oscillator

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The harmonic oscillations of a Duffing oscillator driven by a limited power supply are investigated as a function of the alternative strength of the rotor. The semi-trivial and non-trivial solutions are derived. We examine the stability of these solutions and then explore the complex behaviors associated with the bifurcations sequences. Interestingly, a 3D diagram provides a global view of the effects of alternate strength on the appearance of chaos and hyperchaos on the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of the full analytical solution of the overall unitary dynamics, the time evolution of entanglement is studied in a simple bipartite model system evolving unitarily from a pure initial state. The system consists of two particles in one spatial dimension bound by harmonic forces and having its free center of mass initially localized in space in a minimum uncertainty wavepacket. The existence of such initial states in which the bound particles are not entangled is discussed. Galilean invariance of the system ensures that the dynamics of entanglement between the two particles is independent of the wavepacket mean momentum. In fact, as shown, it is driven by the dispersive center of mass free dynamics, and evolves in a time scale that depends on the interparticle interaction in an essential way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproducing Fourier's law of heat conduction from a microscopic stochastic model is a long standing challenge in statistical physics. As was shown by Rieder, Lebowitz and Lieb many years ago, a chain of harmonically coupled oscillators connected to two heat baths at different temperatures does not reproduce the diffusive behaviour of Fourier's law, but instead a ballistic one with an infinite thermal conductivity. Since then, there has been a substantial effort from the scientific community in identifying the key mechanism necessary to reproduce such diffusivity, which usually revolved around anharmonicity and the effect of impurities. Recently, it was shown by Dhar, Venkateshan and Lebowitz that Fourier's law can be recovered by introducing an energy conserving noise, whose role is to simulate the elastic collisions between the atoms and other microscopic degrees of freedom, which one would expect to be present in a real solid. For a one-dimensional chain this is accomplished numerically by randomly flipping - under the framework of a Poisson process with a variable “rate of collisions" - the sign of the velocity of an oscillator. In this poster we present Langevin simulations of a one-dimensional chain of oscillators coupled to two heat baths at different temperatures. We consider both harmonic and anharmonic (quartic) interactions, which are studied with and without the energy conserving noise. With these results we are able to map in detail how the heat conductivity k is influenced by both anharmonicity and the energy conserving noise. We also present a detailed analysis of the behaviour of k as a function of the size of the system and the rate of collisions, which includes a finite-size scaling method that enables us to extract the relevant critical exponents. Finally, we show that for harmonic chains, k is independent of temperature, both with and without the noise. Conversely, for anharmonic chains we find that k increases roughly linearly with the temperature of a given reservoir, while keeping the temperature difference fixed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the Shannon mutual information of subsystems of critical quantum chains in their ground states. Our results indicate a universal leading behavior for large subsystem sizes. Moreover, as happens with the entanglement entropy, its finite-size behavior yields the conformal anomaly c of the underlying conformal field theory governing the long-distance physics of the quantum chain. We study analytically a chain of coupled harmonic oscillators and numerically the Q-state Potts models (Q = 2, 3, and 4), the XXZ quantum chain, and the spin-1 Fateev-Zamolodchikov model. The Shannon mutual information is a quantity easily computed, and our results indicate that for relatively small lattice sizes, its finite-size behavior already detects the universality class of quantum critical behavior.