7 resultados para Quantum Information

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past decades, all of the efforts at quantifying systems complexity with a general tool has usually relied on using Shannon's classical information framework to address the disorder of the system through the Boltzmann-Gibbs-Shannon entropy, or one of its extensions. However, in recent years, there were some attempts to tackle the quantification of algorithmic complexities in quantum systems based on the Kolmogorov algorithmic complexity, obtaining some discrepant results against the classical approach. Therefore, an approach to the complexity measure is proposed here, using the quantum information formalism, taking advantage of the generality of the classical-based complexities, and being capable of expressing these systems' complexity on other framework than its algorithmic counterparts. To do so, the Shiner-Davison-Landsberg (SDL) complexity framework is considered jointly with linear entropy for the density operators representing the analyzed systems formalism along with the tangle for the entanglement measure. The proposed measure is then applied in a family of maximally entangled mixed state.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, we present an implementation of quantum logic gates and algorithms in a three effective qubits system, represented by a (I = 7/2) NMR quadrupolar nuclei. To implement these protocols we have used the strong modulating pulses (SMP) and the various stages of each implementation were verified by quantum state tomography (QST). The results for the computational base states, Toffolli logic gates, and Deutsch-Jozsa and Grover algorithms are presented here. Also, we discuss the difficulties and advantages of implementing such protocols using the SMP technique in quadrupolar systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nuclear magnetic resonance (NMR) was successfully employed to test several protocols and ideas in quantum information science. In most of these implementations, the existence of entanglement was ruled out. This fact introduced concerns and questions about the quantum nature of such bench tests. In this paper, we address some issues related to the non-classical aspects of NMR systems. We discuss some experiments where the quantum aspects of this system are supported by quantum correlations of separable states. Such quantumness, beyond the entanglement-separability paradigm, is revealed via a departure between the quantum and the classical versions of information theory. In this scenario, the concept of quantum discord seems to play an important role. We also present an experimental implementation of an analogue of the single-photon Mach-Zehnder interferometer employing two nuclear spins to encode the interferometric paths. This experiment illustrates how non-classical correlations of separable states may be used to simulate quantum dynamics. The results obtained are completely equivalent to the optical scenario, where entanglement (between two field modes) may be present.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the Shannon mutual information of subsystems of critical quantum chains in their ground states. Our results indicate a universal leading behavior for large subsystem sizes. Moreover, as happens with the entanglement entropy, its finite-size behavior yields the conformal anomaly c of the underlying conformal field theory governing the long-distance physics of the quantum chain. We study analytically a chain of coupled harmonic oscillators and numerically the Q-state Potts models (Q = 2, 3, and 4), the XXZ quantum chain, and the spin-1 Fateev-Zamolodchikov model. The Shannon mutual information is a quantity easily computed, and our results indicate that for relatively small lattice sizes, its finite-size behavior already detects the universality class of quantum critical behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we propose the nonlocal tunneling mechanism for high-fidelity state transfer between distant parties. The nonlocal tunneling follows from the overlap between the distant sending and receiving wave functions, which is indirectlymediated by the off-resonant normal modes of a quantum channel. This channel is made up of a network of dissipative quantum systems exhibiting the same bosonic or fermionic statistical nature as the sender and receiver. We demonstrate that the incoherence arising from quantum channel nonidealities is almost completely circumvented by the tunneling mechanism, which thus affords a high-fidelity transfer process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin coherence generation in an ensemble of negatively charged (In,Ga)As/GaAs quantum dots was investigated by picosecond time-resolved pump-probe spectroscopy measuring ellipticity. Robust coherence of the ground-state electron spins is generated by pumping excited charged exciton (trion) states. The phase of the coherent state, as evidenced by the spin ensemble precession about an external magnetic field, varies relative to spin coherence generation resonant with the ground state. The phase variation depends on the pump photon energy. It is determined by (a) pumping dominantly either singlet or triplet excited states, leading to a phase inversion, and (b) the subsequent carrier relaxation into the ground states. From the dependence of the precession phase and the measured g factors, information about the quantum dot shell splitting and the exchange energy splitting between triplet and singlet states can be extracted in the ensemble.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the density matrix renormalization group, we calculated the finite-size corrections of the entanglement alpha-Renyi entropy of a single interval for several critical quantum chains. We considered models with U(1) symmetry such as the spin-1/2 XXZ and spin-1 Fateev-Zamolodchikov models, as well as models with discrete symmetries such as the Ising, the Blume-Capel, and the three-state Potts models. These corrections contain physically relevant information. Their amplitudes, which depend on the value of a, are related to the dimensions of operators in the conformal field theory governing the long-distance correlations of the critical quantum chains. The obtained results together with earlier exact and numerical ones allow us to formulate some general conjectures about the operator responsible for the leading finite-size correction of the alpha-Renyi entropies. We conjecture that the exponent of the leading finite-size correction of the alpha-Renyi entropies is p(alpha) = 2X(epsilon)/alpha for alpha > 1 and p(1) = nu, where X-epsilon denotes the dimensions of the energy operator of the model and nu = 2 for all the models.