3 resultados para Quantum Computer
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Purpose - The purpose of this paper is to develop an efficient numerical algorithm for the self-consistent solution of Schrodinger and Poisson equations in one-dimensional systems. The goal is to compute the charge-control and capacitance-voltage characteristics of quantum wire transistors. Design/methodology/approach - The paper presents a numerical formulation employing a non-uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrodinger equation through the split-operator method while a relaxation method in the FTCS scheme ("Forward Time Centered Space") is used to solve the two-dimensional Poisson equation. Findings - The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge-control characteristics and the capacitance-voltage relationship for a split-gate quantum wire device. Originality/value - The paper helps to fulfill the need for C-V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two-dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one-dimensional quantization case, significantly diminishing running time.
Resumo:
In the past decades, all of the efforts at quantifying systems complexity with a general tool has usually relied on using Shannon's classical information framework to address the disorder of the system through the Boltzmann-Gibbs-Shannon entropy, or one of its extensions. However, in recent years, there were some attempts to tackle the quantification of algorithmic complexities in quantum systems based on the Kolmogorov algorithmic complexity, obtaining some discrepant results against the classical approach. Therefore, an approach to the complexity measure is proposed here, using the quantum information formalism, taking advantage of the generality of the classical-based complexities, and being capable of expressing these systems' complexity on other framework than its algorithmic counterparts. To do so, the Shiner-Davison-Landsberg (SDL) complexity framework is considered jointly with linear entropy for the density operators representing the analyzed systems formalism along with the tangle for the entanglement measure. The proposed measure is then applied in a family of maximally entangled mixed state.
Resumo:
In this work, we present an implementation of quantum logic gates and algorithms in a three effective qubits system, represented by a (I = 7/2) NMR quadrupolar nuclei. To implement these protocols we have used the strong modulating pulses (SMP) and the various stages of each implementation were verified by quantum state tomography (QST). The results for the computational base states, Toffolli logic gates, and Deutsch-Jozsa and Grover algorithms are presented here. Also, we discuss the difficulties and advantages of implementing such protocols using the SMP technique in quadrupolar systems.