5 resultados para Pyrimidine
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Leishmania parasites, the causative agent of leishmaniasis, are transmitted through the bite of an infected sand fly. Leishmania parasites present two basic forms known as promastigote and amastigote which, respectively, parasitizes the vector and the mammalian hosts. Infection of the vertebrate host is dependent on the development, in the vector, of metacyclic promastigotes, however, little is known about the factors that trigger metacyclogenesis in Leishmania parasites. It has been generally stated that "stressful conditions" will lead to development of metacyclic forms, and with the exception of a few studies no detailed analysis of the molecular nature of the stress factor has been performed. Here we show that presence/absence of nucleosides, especially adenosine, controls metacyclogenesis both in vitro and in vivo. We found that addition of an adenosine-receptor antagonist to in vitro cultures of Leishmania amazonensis significantly increases metacyclogenesis, an effect that can be reversed by the presence of specific purine nucleosides or nucleobases. Furthermore, our results show that proliferation and metacyclogenesis are independently regulated and that addition of adenosine to culture medium is sufficient to recover proliferative characteristics for purified metacyclic promastigotes. More importantly, we show that metacyclogenesis was inhibited in sand flies infected with Leishmania infantum chagasi that were fed a mixture of sucrose and adenosine. Our results fill a gap in the life cycle of Leishmania parasites by demonstrating how metacyclogenesis, a key point in the propagation of the parasite to the mammalian host, can be controlled by the presence of specific purines.
Resumo:
Uridine adenosine tetraphosphate (Up(4)A) has been recently identified as a novel and potent endothelium-derived contracting factor and contains both purine and pyrimidine moieties, which activate purinergic P2X and P2Y receptors. The present study was designed to compare contractile responses to Up(4)A and other nucleotides such as ATP (P2X/P2Y agonist), UTP (P2Y(2)/P2Y(4) agonist), UDP (P2Y(6) agonist), and alpha,beta-methylene ATP (P2X(1) agonist) in different vascular regions [thoracic aorta, basilar, small mesenteric, and femoral arteries] from deoxycorticosterone acetate-salt (DOCA-salt) and control rats. In DOCA-salt rats [vs. control uninephrectomized (Uni) rats]: (1) in thoracic aorta, Up(4)A-, ATP-, and UP-induced contractions were unchanged; (2) in basilar artery, Up(4)A-, ATP-, UTP- and UDP-induced contractions were increased, and expression for P2X(1), but not P2Y(2) or P2Y(6) was decreased; (3) in small mesenteric artery, Up(4)A-induced contraction was decreased and UDP-induced contraction was increased; expression of P2Y(2) and P2X(1) was decreased whereas P2Y(6) expression was increased; (4) in femoral artery, Up(4)A-. UTP-, and UDP-induced contractions were increased, but expression of P2Y(2), P2Y(6) and P2X(1) was unchanged. The alpha,beta-methylene ATP-induced contraction was bell-shaped and the maximal contraction was reached at a lower concentration in basilar and mesenteric arteries from Uni rats, compared to arteries from DOCA-salt rats. These results suggest that Up(4)A-induced contraction is heterogenously affected among various vascular beds in arterial hypertension. P2Y receptor activation may contribute to enhancement of Up(4)A-induced contraction in basilar and femoral arteries. These changes in vascular reactivity to Up(4)A may be adaptive to the vascular alterations produced by hypertension. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: Due to the increase of solar ultraviolet radiation (UV) incidence over the last few decades, the use of sunscreen has been widely adopted for skin protection. However, considering the high efficiency of sunlight-induced DNA lesions, it is critical to improve upon the current approaches that are used to evaluate protection factors. An alternative approach to evaluate the photoprotection provided by sunscreens against daily UV radiation-induced DNA damage is provided by the systematic use of a DNA dosimeter. Methodology/Principal Findings: The Sun Protection Factor for DNA (DNA-SPF) is calculated by using specific DNA repair enzymes, and it is defined as the capacity for inhibiting the generation of cyclobutane pyrimidine dimers (CPD) and oxidised DNA bases compared with unprotected control samples. Five different commercial brands of sunscreen were initially evaluated, and further studies extended the analysis to include 17 other products representing various formulations and Sun Protection Factors (SPF). Overall, all of the commercial brands of SPF 30 sunscreens provided sufficient protection against simulated sunlight genotoxicity. In addition, this DNA biosensor was useful for rapidly screening the biological protection properties of the various sunscreen formulations. Conclusions/Significance: The application of the DNA dosimeter is demonstrated as an alternative, complementary, and reliable method for the quantification of sunscreen photoprotection at the level of DNA damage.
Resumo:
Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and has been exploited as the target for therapy against proliferative and parasitic diseases. In this study, we report the crystal structures of DHODH from Leishmania major, the species of Leishmania associated with zoonotic cutaneous leishmaniasis, in its apo form and in complex with orotate and fumarate molecules. Both orotate and fumarate were found to bind to the same active site and exploit similar interactions, consistent with a ping-pong mechanism described for class 1A DHODHs. Analysis of LmDHODH structures reveals that rearrangements in the conformation of the catalytic loop have direct influence on the dimeric interface. This is the first structural evidence of a relationship between the dimeric form and the catalytic mechanism. According to our analysis, the high sequence and structural similarity observed among trypanosomatid DHODH suggest that a single strategy of structure-based inhibitor design can be used to validate DHODH as a druggable target against multiple neglected tropical diseases such as Leishmaniasis, Sleeping sickness and Chagas' diseases. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
UVA light (320–400 nm) represents approximately 95% of the total solar UV radiation that reaches the Earth’s surface. UVA light induces oxidative stress and the formation of DNA photoproducts in skin cells. These photoproducts such as pyrimidine dimers (cyclobutane pyrimidine dimers, CPDs, and pyrimidine (6-4) pyrimidone photoproducts, 6-4PPs) are removed by nucleotide excision repair (NER). In this repair pathway, the XPA protein is recruited to the damage removal site; therefore, cells deficient in this protein are unable to repair the photoproducts. The aim of this study was to investigate the involvement of oxidative stress and the formation of DNA photoproducts in UVA-induced cell death. In fact, similar levels of oxidative stress and oxidised bases were detected in XP-A and NER-proficient cells exposed to UVA light. Interestingly, CPDs were detected in both cell lines; however, 6-4PPs were detected only in DNA repairdeficient cells. XP-A cells were also observed to be significantly more sensitive to UVA light compared to NER-proficient cells, with an increased induction of apoptosis, while necrosis was similarly observed in both cell lines. The induction of apoptosis and necrosis in XP-A cells using adenovirus-mediated transduction of specific photolyases was investigated and we confirm that both types of photoproducts are the primary lesions responsible for inducing cell death in XP-A cells and may trigger the skin-damaging effects of UVA light, particularly skin ageing and carcinogenesis.