8 resultados para Purinergic Receptor

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purinergic receptors participate, in almost every cell type, in controlling metabolic activities and many physiological functions including signal transmission, proliferation and differentiation. While most of P2Y receptors induce transient elevations of intracellular calcium concentration by activation of intracellular calcium pools and forward these signals as waves which can also be transmitted into neighboring cells, P2X receptors produce calcium spikes which also include activation of voltage-operating calcium channels. P2Y and P2X receptors induce calcium transients that activate transcription factors responsible for the progress of differentiation through mediators including calmodulin and calcineurin. Expression of P2X2 as well as of P2X7 receptors increases in differentiating neurons and glial cells, respectively. Gene expression silencing assays indicate that these receptors are important for the progress of differentiation and neuronal or glial fate determination. Metabotropic receptors, mostly P2Y1 and P2Y2 subtypes, act on embryonic cells or cells at the neural progenitor stage by inducing proliferation as well as by regulation of neural differentiation through NFAT translocation. The scope of this review is to discuss the roles of purinergic receptor-induced calcium spike and wave activity and its codification in neurodevelopmental and neurodifferentiation processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bradykinin is not only important for inflammation and blood pressure regulation, but also involved in neuromodulation and neuroprotection. Here we describe novel functions for bradykinin and the kinin-B2 receptor (B2BkR) in differentiation of neural stem cells. In the presence of the B2BkR antagonist HOE-140 during rat neurosphere differentiation, neuron-specific beta 3-tubulin and enolase expression was reduced together with an increase in glial protein expression, indicating that bradykinin- induced receptor activity contributes to neurogenesis. In agreement, HOE-140 affected in the same way expression levels of neural markers during neural differentiation of murine P19 and human iPS cells. Kinin-B1 receptor agonists and antagonists did not affect expression levels of neural markers, suggesting that bradykinin-mediated effects are exclusively mediated via B2BkR. Neurogenesis was augmented by bradykinin in the middle and late stages of the differentiation process. Chronic treatment with HOE-140 diminished eNOS and nNOS as well as M1-M4 muscarinic receptor expression and also affected purinergic receptor expression and activity. Neurogenesis, gliogenesis, and neural migration were altered during differentiation of neurospheres isolated from B2BkR knock-out mice. Whole mount in situ hybridization revealed the presence of B2BkR mRNA throughout the nervous system in mouse embryos, and less beta 3-tubulin and more glial proteins were expressed in developing and adult B2BkR knock-out mice brains. As a underlying transcriptional mechanism for neural fate determination, HOE-140 induced up-regulation of Notch1 and Stat3 gene expression. Because pharmacological treatments did not affect cell viability and proliferation, we conclude that bradykinin-induced signaling provides a switch for neural fate determination and specification of neurotransmitter receptor expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Plasmodium has a complex cell biology and it is essential to dissect the cell-signalling pathways underlying its survival within the host. Methods: Using the fluorescence resonance energy transfer (FRET) peptide substrate Abz-AIKFFARQ-EDDnp and Fluo4/AM, the effects of extracellular ATP on triggering proteolysis and Ca2+ signalling in Plasmodium berghei and Plasmodium yoelii malaria parasites were investigated. Results: The protease activity was blocked in the presence of the purinergic receptor blockers suramin (50 mu M) and PPADS (50 mu M) or the extracellular and intracellular calcium chelators EGTA (5 mM) and BAPTA/AM (25, 100, 200 and 500 mu M), respectively for P. yoelii and P. berghei. Addition of ATP (50, 70, 200 and 250 mu M) to isolated parasites previously loaded with Fluo4/AM in a Ca2+-containing medium led to an increase in cytosolic calcium. This rise was blocked by pre-incubating the parasites with either purinergic antagonists PPADS (50 mu M), TNP-ATP (50 mu M) or the purinergic blockers KN-62 (10 mu M) and Ip5I (10 mu M). Incubating P. berghei infected cells with KN-62 (200 mu M) resulted in a changed profile of merozoite surface protein 1 (MSP1) processing as revealed by western blot assays. Moreover incubating P. berghei for 17 h with KN-62 (10 mu M) led to an increase in rings forms (82% +/- 4, n = 11) and a decrease in trophozoite forms (18% +/- 4, n = 11). Conclusions: The data clearly show that purinergic signalling modulates P. berghei protease(s) activity and that MSP1 is one target in this pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background We have previously reported that a Teiid lizard red blood cells (RBCs) such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Results Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER) pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. Conclusion T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs), for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracelullar medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central chemoreception is the mechanism by which the brain regulates breathing in response to changes in tissue CO2/H+. Abrainstemregion called the retrotrapezoid nucleus (RTN) contains a population of CO2/H+-sensitive neurons that appears to function as an important chemoreceptor. Evidence also indicates that CO2-evoked ATP release from RTN astrocytes modulates activity of CO2/H+-sensitive neurons; however, the extent to which purinergic signalling contributes to chemoreception by RTN neurons is not clear and the mechanism(s) underlying CO2/H+-evoked ATP release is not fully elucidated. The goals of this study are to determine the extent to which ATP contributes to RTN chemoreception both in vivo and in vitro, andwhether purinergic drive to chemoreceptors relies on extracellularCa(2+) or gap junction hemichannels. We also examine the possible contribution of P2Y1 receptors expressed in theRTNto the purinergic drive to breathe. We showthat purinergic signalling contributes, in part, to the CO2/H+ sensitivity of RTN neurons. In vivo, phrenic nerve recordings of respiratory activity in adult rats show that bilateral injections of pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS, a P2 receptor blocker) decreased the ventilatory response to CO2 by 30%. In vitro, loose-patch recordings from RTN neurons show that P2 receptor blockers decreased responsiveness to both 10% and 15% CO2 also by 30%. In the slice, the contribution of purinergic signalling to RTN chemoreception did not increase with temperature (22-35 degrees C) and was retained in low extracellular Ca2+ medium. Conversely, the gap junction blockers carbenoxolone and cobalt decreased neuronal CO2/H+ sensitivity by an amount similar to P2 receptor antagonists. Inhibition of the P2Y1 receptor in the RTN had no effect on CO2 responsivness in vitro or in vivo; thus, the identity of P2 receptors underlying the purinergic component of RTN chemoreception remains unknown. These results support the possibility that CO2/H+-evoked ATP release is mediated by a mechanism involving gap junction hemichannels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The medullary raphe (MR) is a putative central chemoreceptor site, contributing to hypercapnic respiratory responses elicited by changes in brain PCO2/pH. Purinergic mechanisms in the central nervous system appear to contribute to central chemosensitivity. To further explore the role of P2 receptors within the rostral and caudal MR in relation to respiratory control in room air and hypercapnic conditions, we performed microinjections of PPADS, a non-selective P2X antagonist, in conscious rats. Microinjections of PPADS into the rostral or caudal MR produced no changes in the respiratory frequency, tidal volume and ventilation in room air condition. The ventilatory response to hypercapnia was attenuated after microinjection of PPADS into the rostral but not in the caudal MR when compared to the control group (vehicle microinjection). These data suggest that P2X receptors in the rostral MR contribute to the ventilatory response to CO2, but do not participate in the tonic maintenance of ventilation under room air condition in conscious rats. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P2X receptors are expressed on ventrolateral medulla projecting paraventricular nucleus (PVN) neurons. Here, we investigate the role of adenosine 5′-triphosphate (ATP) in modulating sympathetic nerve activity (SNA) at the level of the PVN. We used an in situ arterially perfused rat preparation to determine the effect of P2 receptor activation and the putative interaction between purinergic and glutamatergic neurotransmitter systems within the PVN on lumbar SNA (LSNA). Unilateral microinjection of ATP into the PVN induced a dose-related increase in the LSNA (1 nmol: 38 ± 6 %, 2.5 nmol: 72 ± 7 %, 5 nmol: 96 ± 13 %). This increase was significantly attenuated by blockade of P2 receptors (pyridoxalphosphate-6-azophenyl-20,40-disulphonic acid, PPADS) and glutamate receptors (kynurenic acid, KYN) or a combination of both. The increase in LSNA elicited by L-glutamate microinjection into the PVN was not affected by a previous injection of PPADS. Selective blockade of non-N-methyl-D-aspartate receptors (6-cyano-7-nitroquinoxaline-2,3-dione disodium salt, CNQX), but not N-methyl-D-aspartate receptors (NMDA) receptors (DL-2-amino-5-phosphonopentanoic acid, AP5), attenuated the ATP-induced sympathoexcitatory effects at the PVN level. Taken together, our data show that purinergic neurotransmission within the PVN is involved in the control of SNA via P2 receptor activation. Moreover, we show an interaction between P2 receptors and non-NMDA glutamate receptors in the PVN suggesting that these functional interactions might be important in the regulation of sympathetic outflow