7 resultados para Pulses.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We report on the generation of tunable light around 400 nm by frequency-doubling ultrashort laser pulses whose spectral phase is modulated by a sum of sinusoidal functions. The linewidth of the ultraviolet band produced is narrower than 1 nm, in contrast to the 12 nm linewidth of the non-modulated incident spectrum. The influence of pixellation of the liquid crystal spatial light modulator on the efficiency of the phase-modulated second harmonic generation is discussed.
Resumo:
Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788 +/- 0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.4.048001]
Resumo:
The relationships between PRL and PGF(2 alpha) and their effect on luteolysis were studied. Heifers were treated with a dopamine-receptor agonist (bromocriptine; Bc) and a Cox-1 and -2 inhibitor (flunixin meglumine [FM]) to inhibit PRL and PGF(2 alpha), respectively. The Bc was given (Hour 0) when ongoing luteolysis was indicated by a 12.5% reduction in CL area (cm(2)) from the area on Day 14 postovulation, and FM was given at Hours 0, 4, and 8. Blood samples were collected every 8-h beginning on Day 14 until Hour 48 and hourly for Hours 0 to 12. Three groups of heifers in ongoing luteolysis were used: control (n = 7), Bc (n = 7), and FM (n = 4). Treatment with Bc decreased (P < 0.003) the PRL concentrations averaged over Hours 1 to 12. During the greatest decrease in PRL (Hours 2-6), LH concentrations were increased. Progesterone concentrations averaged over hours were greater (P < 0.05) in the Bc group than in the controls. In the FM group, no PGFM pulses were detected, and PRL concentrations were reduced. Concentrations of PGFM were not reduced in the Bc group, despite the reduction in PRL. Results supported the hypothesis that a decrease (12.5%) in CL area (cm(2)) is more efficient in targeting ongoing luteolysis (63%) than using any day from Days 14 to >= 19 (efficiency/day, 10-24%). The hypothesis that PRL has a role in luteolysis was supported but was confounded by the known positive effect of LH on progesterone. The hypothesis was supported that the synchrony of PGFM and PRL pulses represents a positive effect of PGF(2 alpha), on PRL, rather than an effect of PRL on PGF(2 alpha). (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO4. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm(-2)), 2 mu s delay time and 6 mu s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal.
Resumo:
The effects of a PRL-stimulating substance (sulpiride) on PRL and PGF2 alpha secretion and on luteal and ovarian follicular dynamics were studied during the estrous cycle in mares. A control group (n = 9) and a sulpiride group (Sp; n = 10) were used. Sulpiride (25 mg) was given every 8 h from Day 13 postovulation to the next ovulation. Repeated sulpiride treatment did not appear to maintain PRL concentrations at 12-h intervals beyond Day 14. Therefore, the hypothesis that a long-term increase in PRL altered luteal and follicular end points was not testable. Hourly samples were collected from the hour of a treatment (Hour 0) to Hour 8 on Day 14. Concentrations of PRL increased to maximum at Hour 4 in the Sp group. The PRL pulses were more prominent (P < 0.008) in the sulpiride group (peak, 19.4 +/- 1.9 ng/mL; mean +/- SEM) than in the controls (11.5 +/- 1.8 ng/mL). Concentrations of a metabolite of PGF2a (PGFM), number, and characteristics of PGFM pulses, and concentrations of progesterone during Hours 0 to 8 were not affected by the increased PRL. A novel observation was that the peak of a PRL pulse occurred at the same hour or 1 h later than the peak of a PGFM pulse in 8 of 8 PGFM pulses in the controls and in 6 of 10 pulses in the Sp group (P < 0.04), indicating that sulpiride interfered with the synchrony between PGFM and PRL pulses. The hypothesis that sulpiride treatment during the equine estrous cycle increases concentrations of PRL and the prominence of PRL pulses was supported. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
One of the clinical limitations of the photodynamic therapy (PDT) is the reduced light penetration into biological tissues. Pulsed lasers may present advantages concerning photodynamic response when compared to continuous wave (CW) lasers operating under the same average power conditions. The aim of this study was to investigate PDT-induced response when using femtosecond laser (FSL) and a first-generation photosensitizer (Photogem) to evaluate the induced depth of necrosis. The in vitro photodegradation of the sensitizer was monitored during illumination either with CWor an FSL as an indirect measurement of the PDT response. Healthy liver of Wistar rats was used to evaluate the tissue response. The photosensitizer was endovenously injected and 30 min after, an energy dose of 150 Jcm-2 was delivered to the liver surface. We observed that the photodegradation rate evaluated via fluorescence spectroscopy was higher for the FSL illumination. The FSL-PDT produced a necrosis nearly twice as deep when compared to the CW-PDT. An increase of the tissue temperature during the application was measured and was not higher than 2.5 °C for the CW laser and not higher than 4.5 °C for the pulsed laser. FSL should be considered as an alternative in PDT applications for improving the results in the treatment of bulky tumors where higher light penetration is required.