2 resultados para Pt(1 1 1) surface
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The plasma density evolution in sawtooth regime on the Tore Supra tokamak is analyzed. The density is measured using fast-sweeping X-mode reflectometry which allows tomographic reconstructions. There is evidence that density is governed by the perpendicular electric flows, while temperature evolution is dominated by parallel diffusion. Postcursor oscillations sometimes lead to the formation of a density plateau, which is explained in terms of convection cells associated with the kink mode. A crescent-shaped density structure located inside q = 1 is often visible just after the crash and indicates that some part of the density withstands the crash. 3D full MHD nonlinear simulations with the code XTOR-2F recover this structure and show that it arises from the perpendicular flows emerging from the reconnection layer. The proportion of density reinjected inside the q = 1 surface is determined, and the implications in terms of helium ash transport are discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766893]
Resumo:
A comprehensive study of pulsed nitriding in AISI H13 tool steel at low temperature (400 degrees C) is reported for several durations. X-ray diffraction results reveal that a nitrogen enriched compound (epsilon-Fe2-3N, iron nitride) builds up on the surface within the first process hour despite the low process temperature. Beneath the surface, X-ray Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM) indicates relatively higher nitrogen concentrations (up to 12 at.%) within the diffusion layer while microscopic nitrides are not formed and existing carbides are not dissolved. Moreover, in the diffusion layer, nitrogen is found to be dispersed in the matrix and forming nanosized precipitates. The small coherent precipitates are observed by High-Resolution Transmission Electron Microscopy (HR-TEM) while the presence of nitrogen is confirmed by electron energy loss spectroscopy (EELS). Hardness tests show that the material hardness increases linearly with the nitrogen concentration, reaching up to 14.5 GPa in the surface while the Young Modulus remains essentially unaffected. Indeed, the original steel microstructure is well preserved even in the nitrogen diffusion layer. Nitrogen profiles show a case depth of about similar to 43 mu m after nine hours of nitriding process. These results indicate that pulsed plasma nitriding is highly efficient even at such low temperatures and that at this process temperature it is possible to form thick and hard nitrided layers with satisfactory mechanical properties. This process can be particularly interesting to enhance the surface hardness of tool steels without exposing the workpiece to high temperatures and altering its bulk microstructure. (c) 2012 Elsevier B.V. All rights reserved.