8 resultados para Prosthetic Motor Imaginary Task

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work investigated the effects of frequency and precision of feedback on the learning of a dual-motor task. One hundred and twenty adults were randomly assigned to six groups of different knowledge of results (KR), frequency (100%, 66% or 33%) and precision (specific or general) levels. In the stabilization phase, participants performed the dual task (combination of linear positioning and manual force control) with the provision of KR. Ten non-KR adaptation trials were performed for the same task, but with the introduction of an electromagnetic opposite traction force. The analysis showed a significant main effect for frequency of KR. The participants who received KR in 66% of the stabilization trials showed superior adaptation performance than those who received 100% or 33%. This finding reinforces that there is an optimal level of information, neither too high nor too low, for motor learning to be effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed at analyzing the relationship between slow- and fast-alpha asymmetry within frontal cortex and the planning, execution and voluntary control of saccadic eye movements (SEM), and quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 12 healthy participants performing a fixed (i.e., memory-driven) and a random SEM (i.e., stimulus-driven) condition. We find main effects for SEM condition in slow- and fast-alpha asymmetry at electrodes F3-F4, which are located over premotor cortex, specifically a negative asymmetry between conditions. When analyzing electrodes F7-F8, which are located over prefrontal cortex, we found a main effect for condition in slow-alpha asymmetry, particularly a positive asymmetry between conditions. In conclusion, the present approach supports the association of slow- and fast-alpha bands with the planning and preparation of SEM, and the specific role of these sub-bands for both, the attention network and the coordination and integration of sensory information with a (oculo)-motor response. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives To investigate the effect of Nintendo Wii (TM)-based motor cognitive training versus balance exercise therapy on activities of daily living in patients with Parkinson's disease. Design Parallel, prospective, single-blind, randomised clinical trial. Setting Brazilian Parkinson Association. Participants Thirty-two patients with Parkinson's disease (Hoehn and Yahr stages 1 and 2). Interventions Fourteen training sessions consisting of 30 minutes of stretching, strengthening and axial mobility exercises, plus 30 minutes of balance training. The control group performed balance exercises without feedback or cognitive stimulation, and the experimental group performed 10 Wii Fit (TM) games. Main outcome measure Section II of the Unified Parkinson's Disease Rating Scale (UPDRS-II). Randomisation Participants were randomised into a control group (n = 16) and an experimental group (n = 16) through blinded drawing of names. Statistical analysis Repeated-measures analysis of variance (RM-ANOVA). Results Both groups showed improvement in the UPDRS-II with assessment effect (RM-ANOVA P < 0.001, observed power = 0.999). There was no difference between the control group and the experimental group before training {8.9 [standard deviation (SD) 2.9] vs 10.1 (SD 3.8)}, after training [7.6 (SD 2.9) vs 8.1 (SD 3.5)] or 60 days after training [8.1 (SD 3.2) vs 8.3 (SD 3.6)]. The mean difference of the whole group between before training and after training was -0.9 (SD 2.3, 95% confidence interval -1.7 to -0.6). Conclusion Patients with Parkinson's disease showed improved performance in activities of daily living after 14 sessions of balance training, with no additional advantages associated with the Wii-based motor and cognitive training. Registered on http://www.clinicaltrials.gov (identifier: NCT01580787). (C) 2012 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the influence of cueing on the performance of untrained and trained complex motor responses. Healthy adults responded to a visual target by performing four sequential movements (complex response) or a single movement (simple response) of their middle finger. A visual cue preceded the target by an interval of 300, 1000, or 2000 ms. In Experiment 1, the complex and simple responses were not previously trained. During the testing session, the complex response pattern varied on a trial-by-trial basis following the indication provided by the visual cue. In Experiment 2, the complex response and the simple response were extensively trained beforehand. During the testing session, the trained complex response pattern was performed in all trials. The latency of the untrained and trained complex responses decreased from the short to the medium and long cue-target intervals. The latency of the complex response was longer than that of the simple response, except in the case of the trained responses and the long cue-target interval. These results suggest that the preparation of untrained complex responses cannot be completed in advance, this being possible, however, for trained complex responses when enough time is available. The duration of the 1st submovement, 1st pause and 2nd submovement of the untrained and the trained complex responses increased from the short to the long cue-target interval, suggesting that there is an increase of online programming of the response possibly related to the degree of certainty about the moment of target appearance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives To evaluate the learning, retention and transfer of performance improvements after Nintendo Wii Fit (TM) training in patients with Parkinson's disease and healthy elderly people. Design Longitudinal, controlled clinical study. Participants Sixteen patients with early-stage Parkinson's disease and 11 healthy elderly people. Interventions Warm-up exercises and Wii Fit training that involved training motor (shifts centre of gravity and step alternation) and cognitive skills. A follow-up evaluative Wii Fit session was held 60 days after the end of training. Participants performed a functional reach test before and after training as a measure of learning transfer. Main outcome measures Learning and retention were determined based on the scores of 10 Wii Fit games over eight sessions. Transfer of learning was assessed after training using the functional reach test. Results Patients with Parkinson's disease showed no deficit in learning or retention on seven of the 10 games, despite showing poorer performance on five games compared with the healthy elderly group. Patients with Parkinson's disease showed marked learning deficits on three other games, independent of poorer initial performance. This deficit appears to be associated with cognitive demands of the games which require decision-making, response inhibition, divided attention and working memory. Finally, patients with Parkinson's disease were able to transfer motor ability trained on the games to a similar untrained task. Conclusions The ability of patients with Parkinson's disease to learn, retain and transfer performance improvements after training on the Nintendo Wii Fit depends largely on the demands, particularly cognitive demands, of the games involved, reiterating the importance of game selection for rehabilitation purposes. (C) 2012 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Catching an object is a complex movement that involves not only programming but also effective motor coordination. Such behavior is related to the activation and recruitment of cortical regions that participates in the sensorimotor integration process. This study aimed to elucidate the cortical mechanisms involved in anticipatory actions when performing a task of catching an object in free fall. Methods Quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 20 healthy right-handed participants performed the catching ball task. We used the EEG coherence analysis to investigate subdivisions of alpha (8-12 Hz) and beta (12-30 Hz) bands, which are related to cognitive processing and sensory-motor integration. Results Notwithstanding, we found the main effects for the factor block; for alpha-1, coherence decreased from the first to sixth block, and the opposite effect occurred for alpha-2 and beta-2, with coherence increasing along the blocks. Conclusion It was concluded that to perform successfully our task, which involved anticipatory processes (i.e. feedback mechanisms), subjects exhibited a great involvement of sensory-motor and associative areas, possibly due to organization of information to process visuospatial parameters and further catch the falling object.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background The time synchronization is a very important ability for the acquisition and performance of motor skills that generate the need to adapt the actions of body segments to external events of the environment that are changing their position in space. Down Syndrome (DS) individuals may present some deficits to perform tasks with synchronization demand. We aimed to investigate the performance of individuals with DS in a simple Coincident Timing task. Method 32 individuals were divided into 2 groups: the Down syndrome group (DSG) comprised of 16 individuals with average age of 20 (+/− 5 years old), and a control group (CG) comprised of 16 individuals of the same age. All individuals performed the Simple Timing (ST) task and their performance was measured in milliseconds. The study was conducted in a single phase with the execution of 20 consecutive trials for each participant. Results There was a significant difference in the intergroup analysis for the accuracy adjustment - Absolute Error (Z = 3.656, p = 0.001); and for the performance consistence - Variable Error (Z = 2.939, p = 0.003). Conclusion DS individuals have more difficulty in integrating the motor action to an external stimulus and they also present more inconsistence in performance. Both groups presented the same tendency to delay their motor responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect produced by a warning stimulus(i) (WS) in reaction time (RT) tasks is commonly attributed to a facilitation of sensorimotor mechanisms by alertness. Recently, evidence was presented that this effect is also related to a proactive inhibition of motor control mechanisms. This inhibition would hinder responding to the WS instead of the target stimulus (TS). Some studies have shown that auditory WS produce a stronger facilitatory effect than visual WS. The present study investigated whether the former WS also produces a stronger inhibitory effect than the latter WS. In one session, the RTs to a visual target in two groups of volunteers were evaluated. In a second session, subjects reacted to the visual target both with (50% of the trials) and without (50% of the trials) a WS. During trials, when subjects received a WS, one group received a visual WS and the other group was presented with an auditory WS. In the first session, the mean RTs of the two groups did not differ significantly. In the second session, the mean RT of the two groups in the presence of the WS was shorter than in their absence. The mean RT in the absence of the auditory WS was significantly longer than the mean RT in the absence of the visual WS. Mean RTs did not differ significantly between the present conditions of the visual and auditory WS. The longer RTs of the auditory WS group as opposed to the visual WS group in the WS-absent trials suggest that auditory WS exert a stronger inhibitory influence on responsivity than visual WS.