3 resultados para Preimplantation genetic screening

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Calstabins 1 and 2 bind to Ryanodine receptors regulating muscle excitation-contraction coupling. Mutations in Ryanodine receptors affecting their interaction with calstabins lead to different cardiac pathologies. Animal studies suggest the involvement of calstabins with dilated cardiomyopathy. Results We tested the hypothesis that calstabins mutations may cause dilated cardiomyopathy in humans screening 186 patients with idiopathic dilated cardiomyopathy for genetic alterations in calstabins 1 and 2 genes (FKBP12 and FKBP12.6). No missense variant was found. Five no-coding variations were found but not related to the disease. Conclusions These data corroborate other studies suggesting that mutations in FKBP12 and FKBP12.6 genes are not commonly related to cardiac diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Implementing precise techniques in routine diagnosis of chronic granulomatous disease (CGD), which expedite the screening of molecular defects, may be critical for a quick assumption of patient prognosis. This study compared the efficacy of single-strand conformation polymorphism analysis (SSCP) and high-performance liquid chromatography under partially denaturing conditions (dHPLC) for screening mutations in CGD patients. We selected 10 male CGD patients with a clinical history of severe recurrent infections and abnormal respiratory burst function. gDNA, mRNA and cDNA samples were prepared by standard methods. CYBB exons were amplified by PCR and screened by SSCP or dHPLC. Abnormal DNA fragments were sequenced to reveal the nature of the mutations. The SSCP and dHPLC methods showed DNA abnormalities, respectively, in 55% and 100% of the cases. Sequencing of the abnormal DNA samples confirmed mutations in all cases. Four novel mutations in CYBB were identified which were picked up only by the dHPLC screening (c.904 insC, c.141+5 g>t, c.553 T>C, and c.665 A>T). This work highlights the relevance of dHPLC, a sensitive, fast, reliable and cost-effective method for screening mutations in CGD, which in combination with functional assays assessing the phagocyte respiratory burst will contribute to expedite the definitive diagnosis of X-linked CGD, direct treatment, genetic counselling and to have a clear assumption of the prognosis. This strategy is especially suitable for developing countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first cleavage divisions and preimplantation embryonic development are supported by mRNA and proteins synthesized and stored during oogenesis. Thus, mRNA molecules of maternal origin decrease and embryonic development becomes gradually dependent on expression of genetic information derived from the embryonic genome. However, it is still unclear what the role of the sperm cell is during this phase and whether the absence of the sperm cell during the artificial oocyte activation affects subsequent embryonic development. The objective of this study was to determine, in bovine embryos, changes in cell cycle-associated transcript levels (cyclin A, cyclin B, cyclin E, CDC2, CDK2, and CDK4) after oocyte activation in the presence or absence of the sperm cell. To evaluate that, in vitro-produced (IVP) and parthenogenetically activated (PA) embryos (2-4 cells (2-4C), 8-16 cells (8-16C) and blastocysts) were evaluated by real-time PCR. There was no difference in cleavage and blastocyst rates between IVP and PA groups. Transcript level was higher in oocytes than in IVP and PA embryos. Cleaved PA embryos showed higher expression of cyclin A, cyclin B, cyclin E, and CDK2 and lower expression of CDC2 when compared with that from the IVP group. At the time of activation, all transcripts were expressed less in PA than in IVP embryos, whereas at the blastocyst stage, almost all genes were expressed at a higher level in the PA group. These results suggest that in both groups there is an initial consumption of these transcripts in the early stages of embryonic development. Furthermore, 8-16C embryos seem to synthesize more cell cycle-related genes than 2-4C embryos. However, in PA embryos, activation of the cell cycle genes seems to occur after the 8- to 16-cell stage, suggesting a failure in the activation process.