9 resultados para Pregnant rats
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The aim of the present study was to analyse the influence of stress on pregnant rats, particularly in terms of maternal, placental and fetal weight, placental morphology and placental gene expression of the angiogenic factors Vegfa and Pgf and their receptors. The parameters were evaluated on gestation Day 20. Maternal, fetal and placental weights were statistically lower in stressed animals than controls, suggesting abnormalities in gestational physiology. Morphologically the placentas of rats subjected to stress were reduced in size and weight, with few glycogen cells and a significant increase in the number of apoptotic cells. Stress caused an increase in placental gene expression of Vegfa (P < 0.05) and a reduction in Pgf, Flt1 and Kdr expression (P < 0.05). It has been suggested that increased VEGF is associated with vasodilatation and hypotension, but in this model persistent hypertension was present. This study suggests that the limited hypotensive Vegfa response to stress-induced hypertension could result from reduced expression of Flt1/Kdr disrupting specific VEGF pathways. These findings may elucidate one of the multiple possible factors underlying how stress modulates placental physiology, and could aid the understanding of stress-induced gestational disorders.
Resumo:
The transition from gestation to lactation is characterized by a robust adaptation of maternal pancreatic beta-cells. Consistent with the loss of beta-cell mass, glucose-induced insulin secretion is down-regulated in the islets of early lactating dams. Extensive experimental evidence has demonstrated that the surge of prolactin is responsible for the morphofunctional remodeling of the maternal endocrine pancreas during pregnancy, but the precise molecular mechanisms by which this phenotype is rapidly reversed after delivery are not completely understood. This study investigated whether glucocorticoid-regulated expression of Rasd1/Dexras, a small inhibitoryGprotein, is involved in this physiological plasticity. Immunofluorescent staining demonstrated that Rasd1 is localized within pancreatic beta-cells. Rasd1 expression in insulin-secreting cells was increased by dexamethasone and decreased by prolactin. In vivo data confirmed that Rasd1 expression is decreased in islets from pregnant rats and increased in islets from lactating mothers. Knockdown of Rasd1 abolished the inhibitory effects of dexamethasone on insulin secretion and the protein kinase A, protein kinase C, and ERK1/2 pathways. Chromatin immunoprecipitation experiments revealed that glucocorticoid receptor (GR) and signal transducer and activator of transcription 5b (STAT5b) cooperatively mediate glucocorticoid-induced Rasd1 expression in islets. Prolactin inhibited the stimulatory effect of GR/STAT5b complex on Rasd1 transcription. Overall, our data indicate that the stimulation of Rasd1 expression by glucocorticoid at the end of pregnancy reverses the increased insulin secretion that occurs during pregnancy. Prolactin negatively regulates this pathway by inhibiting GR/STAT5b transcriptional activity on the Rasd1 gene. (Endocrinology 153: 3668-3678, 2012)
Resumo:
Aims: An extensive variety of prenatal insults are associated with an increased incidence of metabolic and cardiovascular disorders in adult life. We previously demonstrated that maternal global nutrient restriction during pregnancy leads to increased blood pressure and endothelial dysfunction in the adult offspring. This study aimed to assess whether prenatal exposure to nutritional insult has transgenerational effects in F-2 and F-3 offspring. Main methods: For this, female Wistar rats were randomly divided into two groups on day 1 of pregnancy: a control group fed standard chow ad libitum and a restricted group fed 50% of the ad libitum intake throughout gestation. At delivery, all animals were fed a standard laboratory chow diet. At 11 weeks of age, one female and one male from each restricted litter were randomly selected and mated with rats from another restricted litters in order to generate the F-2 offspring. The same procedure produced F-3 generation. Similarly, the rats in the control group were bred for each generation. Key Findings: Our findings show that the deleterious effects of maternal nutrient restriction to which the F-0 mothers were exposed may not be limited to the male first generation. In fact, we found that elevated blood pressure, an impaired vasodilatory response to acetylcholine and alterations in NO production were all transferred to the subsequent males from F-2 and F-3 generations. Significance: Our data show that global nutrient restriction during pregnancy results in a specific phenotype that can be passed transgenerationally to a second and third generation. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Emerging evidence suggests that in addition to being the 'power houses' of our cells, mitochondria facilitate effector responses of the immune system. Cell death and injury result in the release of mtDNA (mitochondrial DNA) that acts via TLR9 (Toll-like receptor 9), a pattern recognition receptor of the immune system which detects bacterial and viral DNA but not vertebrate DNA. The ability of mtDNA to activate TLR9 in a similar fashion to bacterial DNA stems from evolutionarily conserved similarities between bacteria and mitochondria. mtDNA may be the trigger of systemic inflammation in pathologies associated with abnormal cell death. PE (pre-eclampsia) is a hypertensive disorder of pregnancy with devastating maternal and fetal consequences. The aetiology of PE is unknown and removal of the placenta is the only effective cure. Placentas from women with PE show exaggerated necrosis of trophoblast cells, and circulating levels of mtDNA are higher in pregnancies with PE. Accordingly, we propose the hypothesis that exaggerated necrosis of trophoblast cells results in the release of mtDNA, which stimulates TLR9 to mount an immune response and to produce systemic maternal inflammation and vascular dysfunction that lead to hypertension and IUGR (intra-uterine growth restriction). The proposed hypothesis implicates mtDNA in the development of PE via activation of the immune system and may have important preventative and therapeutic implications, because circulating mtDNA may be potential markers of early detection of PE, and anti-TLR9 treatments may be promising in the management of the disease.
Resumo:
Purpose: To evaluate the effects at term of a highly active antiretroviral drug association when administered for the whole period of rat pregnancy. Methods: Forty pregnant rats weighing about 200 g were randomly divided into four groups: a control group (Ctr = drug vehicle control, n = 10) and three experimental groups. which were treated with an oral solution of zidovudine-stavudine (Exp1x = 10/1 mg/kg b.w., n = 10; Exp3x = 30/3 mg/kg b.w., n = 10; Exp9x = 90/9 mg/kg b.w., n = 10) from "day 0" up to the 20th day of pregnancy. Maternal body weights were recorded at the start of the experiment and on the 7th, 14th and 20th day thereafter. At term (20th day) the rats were anesthetized and submitted to hysterotomy. Implantations, reabsorptions, living fetuses, placentae and intrauterine deaths were looked for and recorded. The collected fetuses and placentae were weighed and the concepts were examined by a stereoscopic microscope looking for external malformations. Results: No significant alterations due to the antiretroviral drug treatment could be detected regarding the number of implantations, fetuses, placentae, absorptions and malformations nor regarding maternal and fetal mortality. Conclusions: Administration of the association zidovudine/stavudine for the whole period of rat pregnancy did not interfere with the maternal, fetal and placental weight gain as well as abnormalities detectable by the employed methodology.
Resumo:
The colocalization, number, and size of various classes of enteric neurons immunoreactive (IR) for the purinergic P2X2 and P2X7 receptors (P2X2R, P2X7R) were analyzed in the myenteric and submucosal plexuses of control, undernourished, and re-fed rats. Pregnant rats were exposed to undernourishment (protein-deprivation) or fed a control diet, and their offspring comprised the following experimental groups: rats exposed to a normal diet throughout gestation until postnatal day (P)42, rats protein-deprived throughout gestation and until P42, and rats protein-deprived throughout gestation until P21 and then given a normal diet until P42. Immunohistochemistry was performed on the myenteric and submucosal plexuses to evaluate immunoreactivity for P2X2R, P2X7R, nitric oxide synthase (NOS), choline acetyltransferase (ChAT), calbindin, and calretinin. Double-immunohistochemistry of the myenteric and submucosal plexuses demonstrated that 100% of NOS-IR, calbindin-IR, calretinin-IR, and ChAT-IR neurons in all groups also expressed P2X2R and P2X7R. Neuronal density increased in the myenteric and submucosal plexuses of undernourished rats compared with controls. The average size (profile area) of some types of neurons in the myenteric and submucosal plexuses was smaller in the undernourished than in the control animals. These changes appeared to be reversible, as animals initially undernourished but then fed a normal diet at P21 (re-feeding) were similar to controls. Thus, P2X2R and P2X7R are present in NOS-positive inhibitory neurons, calbindin- and calretinin-positive intrinsic primary afferent neurons, cholinergic secretomotor neurons, and vasomotor neurons in rats. Alterations in these neurons during undernourishment are reversible following re-feeding
Resumo:
Gestational hypothyroidism is a prevalent disorder in pregnant women. We aimed to investigate the impact of experimental gestational hypothyroidism (EGH) on cardiovascular and autonomic nervous systems (ANS) in the offspring of rats. EGH was induced with methimazole (MMI) 0.02% in drinking water from day 9 of gestation until birth. Sixty day old offspring from MMI-treated dams (OMTD, n = 13) or water-treated dams (OWTD, n = 13) had femoral arteries surgically assessed for the measurements of heart rate (HR), mean (MAP), systolic (SAP) and diastolic arterial pressure (DAP), and spontaneous baroreflex sensitivity (BRS). To investigate the balance of ANS, we established the high (HF) and low frequency (LF) bands of pulse interval (PI) and LF band of SAP spectrum. OMTD had increased MAP (130.2 +/- 2.0 vs 108.8 +/- 3.0 mm Hg, p<0.001), SAP (157.3 +/- 2.9 vs 135.7 +/- 4.5 mm Hg, p<0.001) and DAP (109.7 +/- 1.9 vs 88.4 +/- 2.6 mm Hg, p<0.001) when compared to OWED, and had lower HR (355.1 +/- 8.9 vs 386.8 +/- 9.2 bpm, p<0.05). After spectral analysis of PI and SAP, only LF band of SAP spectrum was higher (7.2 +/- 0.8 vs 4.0 +/- 0.6 mm Hg-2, p<0.01) in OMTD under spontaneous condition. Despite bradycardia, EGH promotes spontaneous hypertension in 60 day old offspring, probably due to increased sympathetic modulation of vessels, which is suggested by the higher LF of SAP. These findings suggest a critical role of maternal THs in the development of fetal cardiovascular and autonomic nervous systems. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
This study investigated the effects of perinatal cadmium exposure on sexual behavior, organ weight, and testosterone levels in adult rats. We examined whether immediate postpartum testosterone administration is able to reverse the toxic effects of the metal. Forty pregnant Wistar rats were divided into three groups: 1) control, 2) 10 mg kg-1 cadmium chloride per day, and 3) 20 mg kg-1 cadmium chloride per day. These dams were treated on gestational days 18 and 21 and from lactation 1 to 7. Immediately after birth, half of the offspring from the experimental and control groups received 50 μl (i.p.) of 0.2% testosterone. Male sexual behavior, histological analysis and weight of organs as well as serum testosterone levels were assessed. Results showed that both cadmium doses disrupted sexual behavior in male rats, and postnatal treatment with testosterone reversed the toxic effects of 10 mg kg-1 cadmium and attenuated the effects of 20 mg kg-1 cadmium. Body weight and absolute testis, epididymis, and seminal vesicle weight were decreased by the higher cadmium dose, and testosterone supplementation did not reverse these effects. Serum testosterone levels were unaffected by both cadmium doses. No histological changes were detected in all organs analyzed. Maternal cadmium exposure effects in sexual parameters of male rat offspring were explained by the altered masculinization of the hypothalamus. We suggest that cadmium damaged cerebral sexual differentiation by its actions as an endocrine disruptor and supported by the changes discretely observed from early life during sexual development to adult life, reflected by sexual behavior. Testosterone supplementation after birth reversed some crucial parameters directly related to sexual behavior.
Resumo:
Fluoxetine (FLX) is commonly used to treat anxiety and depressive disorders in pregnant women. Since FLX crosses the placenta and is excreted in milk, maternal treatment with this antidepressant may expose the fetus and neonate to increased levels of serotonin (5-HT). Long-term behavioral abnormalities have been reported in rodents exposed to higher levels of 5-HT during neurodevelopment. In this study we evaluated if maternal exposure to FLX during pregnancy and lactation would result in behavioral and/or stress response disruption in adolescent and adult rats. Our results indicate that exposure to FLX influenced restraint stress-induced Fos expression in the amygdala in a gender and age-specific manner. In male animals, a decreased expression was observed in the basolateral amygdala at adolescence and adulthood; whereas at adulthood, a decrease was also observed in the medial amygdala. A lack of FLX exposure effect was observed in females and also in the paraventricular nucleus of both genders. Regarding the behavioral evaluation, FLX exposure did not induce anhedonia in the sucrose preference test but decreased the latency to feed of both male and female adolescent rats evaluated in the novelty-suppressed feeding test. In conclusion, FLX exposure during pregnancy and lactation decreases acute amygdalar stress response to a psychological stressor in males (adolescents and adults) as well as influences the behavior of adolescents (males and females) in a model that evaluates anxiety and/or depressive-like behavior. Even though FLX seems to be a developmental neurotoxicant, the translation of these findings to human safe assessment remains to be determined since it is recognized that not treating a pregnant or lactating woman may also impact negatively the development of the descendants.