3 resultados para Power losses
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The physical origins of the magnetic properties of nonoriented electrical steels; its relations to microstructural features like grain size, nonmetallic inclusions, dislocation density distribution, crystallographic texture, and residual stresses; and its processing by cold rolling and annealing are overviewed, using quantitative relations whenever available.
Resumo:
This paper presents a method for electromagnetic torque ripple and copper losses reduction in (non-sinusoidal or trapezoidal) surface-mount permanent magnet synchronous machines (SM-PMSM). The method is based on an extension of classical dq transformation that makes it possible to write a vectorial model for this kind of machine (with a non-sinusoidal back-EMF waveform). This model is obtained by the application of that transformation in the classical machine per-phase model. That transformation can be applied to machines that have any type of back-EMF waveform, and not only trapezoidal or square-wave back-EMF waveforms. Implementation results are shown for an electrical converter, using the proposed vectorial model, feeding a non-sinusoidal synchronous machine (brushless DC motor). They show that the use of this vectorial mode is a way to achieve improvements in the performance of this kind of machine, considering the electromagnetic torque ripple and copper losses, if compared to a drive system that employs a classical six-step mode as a converter. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Although nontechnical losses automatic identification has been massively studied, the problem of selecting the most representative features in order to boost the identification accuracy and to characterize possible illegal consumers has not attracted much attention in this context. In this paper, we focus on this problem by reviewing three evolutionary-based techniques for feature selection, and we also introduce one of them in this context. The results demonstrated that selecting the most representative features can improve a lot of the classification accuracy of possible frauds in datasets composed by industrial and commercial profiles.