6 resultados para Potassium Chloride

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nutritional management of seedlings in the nursery is one of the most important practices that influence seedling quality. The aim of this work was to evaluate the effect of nitrogen, phosphorus and potassium on the development of Schizolobium amazonicum seedlings grown in 250 cm(3) containers with a commercial substrate in the North of Mato Grosso State, Brazil. The experimental design was completely randomized design with five treatments and five replications, each replication being represented by 24 seedlings. The treatments were: control (only commercial substrate); nitrogen fertilization (150 g m(-3) N using ammonium sulfate + 1.0 kg of ammonium sulfate dissolved in 100 L of water and applied in coverage); phosphorus fertilization (300 g P2O5 m(-3) using simple superphosphate); potassium fertilization (100 g m(-3) K2O using potassium chloride + 0.3 kg of potassium chloride dissolved in 100 L of water and applied in coverage) and; complete (a mixture of the three nutrients, 150, 300 and 100 g m(-3) N, P2O5 and K2O, respectively + 1.0 kg of ammonium sulfate + 0.3 kg of potassium chloride). The commercial substrate was composted milled pine bark plus vermiculite. Evaluations of the seedlings were performed at 90 days after sowing. The complete treatment (NPK) gave the highest values for biometric and best plant indices, which express the quality. When analyzing nutrients in isolation; potassium had the lowest effect. Based on these results it can be recommended to fertilize Schizolobium amazonicum seedlings in nurseries with 150, 300 and 100 g m(-3) of N, P2O5 and K2O, respectively, plus 1.0 kg of sulfate ammonium and 0.3 kg of potassium chloride applied in coverage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of foliar and soil applied phosphite on grain yield in common bean (Phaseolus vulgaris L.) grown in a weathered soil under low and adequate phosphate availability were evaluated. In the first experiment, treatments were composed of a 2 x 7 + 2 factorial scheme, with 2 soil P levels supplied as phosphate (40 e 200 mg P dm(-3) soil), 7 soil P levels supplied as phosphite (0-100 mg P dm(-3) soil), and 2 additional treatments (without P supply in soil, and all P supplied as phosphite). In the second experiment, treatments were composed of a 2 x 3 x 2 factorial scheme, with 2 soil phosphate levels (40 e 200 mg P dm(-3) soil), combined with 3 nutrient sources applied via foliar sprays (potassium phosphite, potassium phosphate, and potassium chloride as a control), and 2 foliar application numbers (single and two application). Additional treatments showed that phosphite is not P source for common bean nutrition. Phosphite supply in soil increased the P content in shoot (at full physiological maturity stage) and grains, but at the same time considerably decreased grain yield, regardless of the soil phosphate availability. Foliar sprays of phosphite decreased grain yield in plants grown under low soil phosphate availability, but no effect was observed in plants grown under adequate soil phosphate availability. In general, foliar sprays of phosphate did not satisfactorily improve grain yield of the common bean plants grown under low soil phosphate availability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction of the cationic meso-tetrakis 4-N-methylpyridyl porphyrin (TMPyP) with large unilamellar vesicles (LUVs) was investigated in the present study. LUVs were formed by mixtures of the zwitterionic 1,2-dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC) and anionic 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) phospholipids, at different DPPG molar percentages. All investigations were carried out above (50 degrees C) and below (25 degrees C) the main phase transition temperature of the LUVs (similar to 41 degrees C). The binding constant values, K-b, estimated from the time-resolved fluorescence study, showed a significant increase of the porphyrin affinity at higher mol% DPPG. This affinity is markedly increased when the LUVs are in the liquid crystalline state. For both situations, the increase of the K-b value was also followed by a higher porphyrin fraction bound to the LUVs. The displacement of the vesicle-bound porphyrins toward the aqueous medium, upon titration with the salt potassium chloride (KCl), was also studied. Altogether, our steady-state and frequency-domain fluorescence quenching data results indicate that the TMPyP is preferentially located at the LUVs Stern layer. This is supported by the zeta potential studies, where a partial neutralization of the LUVs surface charge, upon porphyrin titration, was observed. Dynamic light scattering (DLS) results showed that, for some phospholipid systems, this partial neutralization leads to the LUVs flocculation. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of foliar and soil applied phosphite on grain yield in common bean (Phaseolus vulgaris L.) grown in a weathered soil under low and adequate phosphate availability were evaluated. In the first experiment, treatments were composed of a 2 x 7 + 2 factorial scheme, with 2 soil P levels supplied as phosphate (40 e 200 mg P dm-3 soil), 7 soil P levels supplied as phosphite (0-100 mg P dm-3 soil), and 2 additional treatments (without P supply in soil, and all P supplied as phosphite). In the second experiment, treatments were composed of a 2 x 3 x 2 factorial scheme, with 2 soil phosphate levels (40 e 200 mg P dm-3 soil), combined with 3 nutrient sources applied via foliar sprays (potassium phosphite, potassium phosphate, and potassium chloride as a control), and 2 foliar application numbers (single and two application). Additional treatments showed that phosphite is not P source for common bean nutrition. Phosphite supply in soil increased the P content in shoot (at full physiological maturity stage) and grains, but at the same time considerably decreased grain yield, regardless of the soil phosphate availability. Foliar sprays of phosphite decreased grain yield in plants grown under low soil phosphate availability, but no effect was observed in plants grown under adequate soil phosphate availability. In general, foliar sprays of phosphate did not satisfactorily improve grain yield of the common bean plants grown under low soil phosphate availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO2 efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (delta C-13) of stem wood alpha-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P-W) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P-W, but to a lesser extent compared with K fertilization. Neither K nor Na affected delta C-13 of stem wood alpha-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P-W resulted from drastic changes in carbon allocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urea has been considered as a promising alternative nitrogen source for the cultivation of Arthrospira platensis if it is possible to avoid ammonia toxicity; however, this procedure can lead to periods of nitrogen shortage. This study shows that the addition of potassium nitrate, which acts as a nitrogen reservoir, to cultivations carried out with urea in a fed-batch process can increase the maximum cell concentration (Xm) and also cell productivity (PX). Using response surface methodology, the model indicates that the estimated optimum Xm can be achieved with 17.3 mM potassium nitrate and 8.9 mM urea. Under this condition an Xm of 6077 +/- 199 mg/L and a PX of 341.5 +/- 19.1 mg L1day1 were obtained.