12 resultados para Potable water. Silver nanoparticle. Antibacterial activity. Synthesis. Ceramic foam
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Endophytic fungi are considered a rich source of active compounds resulting from their secondary metabolism. Fungi from marine environment grow in a habitat with unique conditions that can contribute to the activation of metabolic pathways of synthesis of different unknown molecules. The production of these compounds may support the adaptation and survival of the fungi in the marine ecosystem. Mangroves are ecosystems situated between land and sea. They are frequently found in tropical and subtropical areas and enclose approximately 18.1 million hectares of the planet. The great biodiversity found in these ecosystems shows the importance of researching them, including studies regarding new compounds derived from the endophytic fungi that inhabit these ecosystems. 3-hydroxypropionic acid (3-HPA) has been isolated from the mangrove endophytic fungus Diaporthe phaseolorum, which was obtained from branches of Laguncularia racemosa. The structure of this compound was elucidated by spectroscopic methods, mainly 1D and 2D NMR. In bioassays, 3-HPA showed antimicrobial activities against both Staphylococcus aureus and Salmonella typhi. The structure of this antibiotic was modified by the chemical reaction of Fischer-Speier esterification to evaluate the biologic activity of its chemical analog. The esterified product, 3-hydroxypropanoic ethyl ester, did not exhibit antibiotic activity, suggesting that the free carboxylic acid group is important to the pharmacological activity. The antibiotic-producing strain was identified with internal transcribed spacer sequence data. To the best of our knowledge, this is the first report of antibacterial activity by 3-HPA against the growth of medically important pathogens.
Resumo:
An octahedral Zn complex with o-phenanthroline (o-phen) and cyanoguanidine (cnge) has been synthesized and characterized. The crystal structural data show the formation of a ZnN5O core where the metal coordinates to two mutually perpendicular o-phenanthrolines as bidentate ligands [Zn-N bond lengths in the 2.124(2)-2.193(2) angstrom range], the cyanide nitrogen of a cnge [d(Zn-N) = 2.092(2) angstrom, angle(Zn-N-C) = 161.1(2)degrees], and a water molecule [d(Zn-Ow) = 2.112(2) angstrom]. Spectral data (FT-IR, Raman, and fluorescence) and speciation studies are in agreement with the structure found in the solid state and the one proposed to exist in the solution. To evaluate the changes in the microbiological activity of Zn, antibacterial studies were carried out by observing the changes in minimum inhibitory concentration of the complex, the ligands, and the metal against five different bacterial strains. The antibacterial activity of Zn improved upon complexation in three of the tested strains.
Resumo:
Objective: To evaluate, in vitro, the antimicrobial activity and biofilm formation of three chlorhexidine varnishes in four Enterococcus faecalis strains: E. faecalis ATCC 29212, E. faecalis EF-D1 (from failed endodontic treatment), E. faecalis 072 (cheese) and E. faecalis U-1765 (nosocomial infection), and one Enterococcus durans strain (failed endodontic treatment). Study Design: The direct contact test was used to study the antimicrobial activity. Bacterial suspensions were exposed for one hour to EC40, Cervitec (CE) and Cervitec Plus (CEP) varnishes. "Eradication" was defined as 100% bacterial kill. The formation of enterococci biofilms was tested on the surface of the varnishes after 24 hours of incubation and expressed as percentage of biofilm reduction. Results: EC40 eradicated all strains except E. faecalis ATCC 29212, where 98.78% kill was achieved. CE and CEP showed antimicrobial activity against all the strains, but most clearly against E. durans and E. faecalis 072. EC40 completely inhibited the formation of biofilm of E. faecalis ATCC 29212, E. faecalis 072 and E. durans. CE and CEP led to over 92% of biofilm reduction, except in the case of E. faecalis U-1765 on CEP (76.42%). Conclusion: The three varnishes studied were seen to be effective in killing the tested strains of enterococci and in inhibiting the formation of biofilm, the best results being observed with EC40.
Resumo:
Endophytic fungi isolated from the red seaweed Bostrychia radicans were studied to identify their molecularly diverse and biologically active natural chemical products. According to 28S ribosomal DNA-based identification, the strain named C81 was 98% identical to Phomopsis longicolla. This strain was cultivated in solid rice medium and produced three major metabolites identified as 18-deoxycytochalasin H (1), mycophenolic acid (2), and dicerandrol C (3). The chemical structures of these compounds were elucidated by 1D and 2D nuclear magnetic resonance as well as by mass spectrometry. Dicerandrol C had significant antimicrobial activity against Staphylococcus aureus (ATCC 6538) and Staphylococcus saprophyticus (ATCC 15305), with minimum inhibitory concentrations of 1 and 2 mu g ml(-1) (1.33 and 2.66 mu M), respectively. These results show the presence of promising metabolites and indicate that these natural products should be considered in the development of new antibiotics.
Resumo:
The chemical stock of emerging contaminants in Brazilian drinking water is of great interest due to the poor water quality at surface water intakes. In addition, little is known about the effect of some contaminants, such as endocrine disrupting chemicals (EDCs), which may be present in both raw and treated water. The aim of this work was to evaluate selected emerging contaminants in Brazilian waters using both chemical and biological analyses. Sampling sites were established in different municipalities based upon raw water quality data. Estrone, 17 beta-estradiol, estriol, 17 alpha-ethinylestradiol, bisphenol A, 4-n-octylphenol and 4-n-nonylphenol were determined in the samples by liquid chromatography-tandem mass spectrometry. A yeast assay using a Saccharomyces cerevisiae bioluminescent bioreporter was used to evaluate the estrogenic activity of the water samples. The first integrated results revealed similarities between the two individual approaches, since higher values for the bioassay were accompanied by significant concentrations of some selected compounds in surface water samples. No estrogenicity was observed for drinking water samples. Our results also indicate that the usual paradigm of evaluating water quality by measuring selected EDCs in a given water sample via chemical analysis, needs to be reviewed since the observed estrogenicity of a water sample is now a better guiding parameter to the selection of samples and substances to be chemically investigated in further analysis. So far, the data bank produced in this work, i.e., the comparison between chemical burden and observed estrogenicity, is not yet sufficiently robust to fully guide this decision. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Phosphorylated poly(styrene-co-divinylbenzene) copolymers prepared by aromatic electrophilic substitution reaction with PCl3/AlCl3 were reacted with carbon dissulfite in order to introduce sulfophosphorylated groups into copolymers. These modifications were characterized by FTIR, elemental analysis, spectrophotometry, optical and scanning electron microscopy. The antibacterial activities of the phosphorylated and sulfophorylated copolymers were assessed against Escherichia coli ATCC25922 suspensions (10(3)-10(7) cells mL(-1)) using a column system. The unmodified copolymers did not have antibacterial activity against the E. coil suspensions but the phosphorylated and sulfophorylated copolymers showed significant bactericidal action for all E. coli concentrations. The sulfophosphorylated copolymers had higher antibacterial activity than the phosphorylated ones, mainly for high concentrations of E. coli cells. Published by Elsevier B.V.
Resumo:
Objective. To evaluate the effect of an experimental gel containing Euclea natalensis extract on dentin permeability. Methods. Thirty-six dentin discs, 1-mm-thick. The discs were prepared from the coronal dentin of extracted human third molars that were divided into 3 groups (n = 10). The dentin discs in each group were treated with the groups following experimental materials: (FG): 1.23% fluoride gel, pH 4.1; (EG): Euclea natalensis extract gel, pH 4.1; (CG): control gel, pH 4.1. The gels were applied to the occlusal slide of the dentin under the following conditions: after 37% phosphoric acid and before 6% citric acid. The hydraulic conductance (HC) of each condition was determined four times using a fluid flow apparatus (Flodec). The data were analyzed using Two-way ANOVA and Tukey's test (P < 0.05). Results. The greatest mean reduction in HC was produced in group EG dentin discs (61.2%; P < 0.05). Even after acid challenge with 6% citric acid the great reduction occurred in group EG (66.0%; P < 0.05) than other groups (CG-77.1%, FG-90.8%). Conclusion. E. natalensis gel not only reduced dentin permeability, but also resisted posttreatment citric acid challenge without changing its permeability. Further research has to confirm this promising result in the clinical situation.
Resumo:
Objective: To analyze the myometrial thickness of rats subjected to creatine (Cr) ingestion. Study design: A total of 14 rats was equally divided into the control group (ConGr) receiving 1 ml potable water and the creatine group (CrGr) subjected to the ingestion of 1.6 g/kg Cr diluted in 1 ml potable water. At the end of 8 weeks, the animals were anesthetized (xylazine and ketamine) and sacrificed, the uteri and ovaries stained with hematoxylin and eosin, the thickness of both the myometrium and the epithelium measured and the follicles counted. Results: Analysis revealed a significant increase in thickness of the myometrium in the CrGr (272.26 +/- 66.71 mu m) contrasted with that from the ConGr (160.76 +/- 35.65 mu m), CrGr > ConGr (p < 0001). Conclusion: Our data suggest that Cr changed myometrial morphology in rats by enhancing myometrial thickness, but its action mechanism in the smooth muscle is still unclear.
Resumo:
Biological assays that have been performed on different types of Brazilian propolis have shown that type 6 propolis (G6) has a strong antimicrobial activity and a low flavonoid content. This study aimed to evaluate the correlation between the phenolic composition and the biological activities displayed by propol is G6 from the state of Bahia and green propol is, also known as type 12 (G12). The values of the flavonoids and the total phenolics in propol is G6 were different than those in propolis G12. Although the G12 variety presented greater antioxidant activity, propolis G6 proved to have greater antimicrobial and cytotoxic activities. The results showed that the phenolic compounds may not be the only compounds responsible for the biological activity. More detailed studies of the chemical composition and an assessment or the biological activity are required to establish the quality of propolis.
Resumo:
The anomalies in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering were investigated. Brilliant green and crystal violet dyes were the molecular probes, and the experiments were carried out on an electrochemically activated Ag surface. The results allowed new insights into the origin of these anomalies and led to a new method to confirm the single-molecule regime in surface-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies that contributed to the imbalance in the anti-Stokes to Stokes intensity ratios at the electromagnetic hot spots was proposed. This method allowed the local plasmonic resonance energies on the metallic surface to be spatially mapped.
Resumo:
Abstract Background Brazilian propolis type 6 (Atlantic forest, Bahia) is distinct from the other types of propolis especially due to absence of flavonoids and presence of other non-polar, long chain compounds, but presenting good in vitro and in vivo antimicrobial activity. Several authors have suggested that fatty acids found in this propolis might be responsible for its antimicrobial activity; however, so far no evidence concerning this finding has been reported in the literature. The goals of this study were to evaluate the antibacterial activity of the main pure fatty acids in the ethanolic extract and fractions and elucidate the chemical nature of the bioactive compounds isolated from Brazilian propolis type 6. Methods Brazilian propolis type 6 ethanolic extract (EEP), hexane fraction (H-Fr), major fatty acids, and isolated sub-fractions were analyzed using high performance liquid chromatography (HPLC), high resolution gas chromatography with flame ionization detection (HRGC-FID), and gas chromatography-mass spectrometry (GC-MS). Three sub-fractions of H-Fr were obtained through preparative HPLC. Antimicrobial activity of EEP, H-Fr, sub-fractions, and fatty acids were tested against Staphyloccus aureus ATCC 25923 and Streptococcus mutans Ingbritt 1600 using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results EEP and H-Fr inhibited the growth of the microorganisms tested; nevertheless, no antimicrobial activity was found for the major fatty acids. The three sub-fractions (1, 2, and 3) were isolated from H-Fr by preparative HPLC and only sub-fraction 1 showed antimicrobial activity. Conclusion a) The major fatty acids tested were not responsible for the antimicrobial activity of propolis type 6; b) Sub-fraction 1, belonging to the benzophenone class, was responsible for the antimicrobial activity observed in the present study. The identification of the bioactive compound will improve the development of more efficient uses of this natural product.
Resumo:
Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. Methods The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography–mass spectrometry. Results EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. Conclusions The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.