2 resultados para Position control
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The European Position Paper on Rhinosinusitis and Nasal Polyps 2012 is the update of similar evidence based position papers published in 2005 and 2007. The document contains chapters on definitions and classification, we now also propose definitions for 'difficult to treat' rhinosinusitis, control of disease and better definitions for rhinosinusitis in children. More emphasis is placed on the diagnosis and treatment of acute rhinosinusitis. Throughout the document the terms chronic rhinosinusitis without nasal polyps (CRSsNP) and chronic rhinosinusitis with nasal polyps (CRSwNP) are used to further point out differences in pathophysiology and treatment of these two entities. There are extensive chapters on epidemiology and predisposing factors, inflammatory mechanisms, (differential) diagnosis of facial pain, genetics, cystic fibrosis, aspirin exacerbated respiratory disease, immunodeficiencies, allergic fungal rhinosinusitis and the relationship between the upper and lower airways. The chapters on paediatric acute and chronic rhinosinusitis are totally rewritten. Last but not least all available evidence for management of acute rhinosinusitis and chronic rhinosinusitis with or without nasal polyps in adults and children is analyzed and presented and management schemes based on the evidence are proposed. This executive summary for otorhinolaryngologists focuses on the most important changes and issues for otorhinolaryngologists.
Resumo:
The control of gene expression by miRNAs has been widely investigated in different species and cell types. Following a probabilistic rather than a deterministic regimen, the action of these short nucleotide sequences on specific genes depends on intracellular concentration,which in turn reflects the balance between biosynthesis and degradation. Recent studies have described the involvement of XRN2, an exoribonuclease, in miRNA degradation and PAPD4, an atypical poly(A) polymerase, in miRNA stability. Herein, we examined the expression of XRN2 and PAPD4 in developing and adult rat hippocampi. Combining bioinformatics and real-time PCR,we demonstrated that XRN2 and PAPD4 expression is regulated by the uncorrelated action of transcription factors, resulting in distinct gene expression profiles during development. Analyses of nuclei position and nestin labeling revealed that both proteins progressively accumulated during neuronal differentiation, and that they are weakly expressed in immature neurons and absent in glial and endothelial cells. Despite the differences in subcellular localization, both genes were concurrently identified within identical neuronal subpopulations, including specific inhibitory interneurons. Thus, we cope with a singular circumstance in biology: an almost complete intersected expression of functional-opposed genes, reinforcing that their antagonistically driven actions on miRNAs “make sense” if simultaneously present at the same cells. Considering that the transcriptome in the nervous system is finely tuned to physiological processes, it was remarkable that miRNA stability-related genes were oncurrently identified in neurons that play essential roles in cognitive functions such as memory and learning. In summary, this study reveals a possible new mechanism for the control of miRNA expression.