3 resultados para Porous

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to evaluate the cytocompatibility of injectable and moldable restorative biomaterials based on granules of dense or porous biphasic calcium phosphates (BCPs) with human primary mesenchymal cells, in order to validate them as tools for stem cell-induced bone regeneration. Porous hydroxyapatite (HA) and HA/beta-tricalcium phosphate (beta-TCP) (60: 40) granules were obtained by the addition of wax spheres and pressing at 20 MPa, while dense materials were compacted by pressing at 100 MPa, followed by thermal treatment (1100 degrees C), grinding, and sieving. Extracts were prepared by 24-h incubation of granules on culture media, with subsequent exposition of human primary mesenchymal cells. Three different cell viability parameters were evaluated on the same samples. Scanning electron microscopy analysis of the granules revealed distinct dense and porous surfaces. After cell exposition to extracts, no significant differences on mitochondrial activity (2,3-bis(2-methoxy-4-nitro-5-sulfophenly)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide) or cell density (Crystal Violet Dye Elution) were observed among groups. However, Neutral Red assay revealed that dense materials extracts induced lower levels of total viable cells to porous HA/beta-TCP (P < 0.01). Calcium ion content was also significantly lower on the extracts of dense samples. Porogenic treatments on BCP composites do not affect cytocompatibility, as measured by three different parameters, indicating that these ceramics are well suited for further studies on future bioengineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of pore size on osteoblastic phenotype development in cultures grown on porous titanium (Ti). Porous Ti discs with three different pore sizes, 312 mu m (Ti 312), 130 mu m (Ti 130) and 62 mu m (Ti 62) were fabricated using a powder metallurgy process. Osteoblastic cells obtained from human alveolar bone were cultured on porous Ti samples for periods of up to 14 days. Cell proliferation was affected by pore size at day 3 (p = 0.0010), day 7 (p = 0.0005) and day 10 (p = 0.0090) in the following way: Ti 62 < Ti 130 < Ti 312. Gene expression of bone markers evaluated at 14 days was affected, RUNX2 (p = 0.0153), ALP (p = 0.0153), BSP (p = 0.0156), COL (p = 0.0156), and OPN (p = 0.0156) by pore size as follows: Ti 312 < Ti 130 < Ti 62. Based on these results, the authors suggest that porous Ti surfaces with pore sizes near 62 mu m, compared with those of 312 mu m and 130 mu m, yield the highest expression of osteoblast phenotype as indicated by the lower cell proliferation rate and higher gene expression of bone markers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the numerical analysis of saturated porous media, taking into account the damage phenomena on the solid skeleton. The porous media is taken into poro-elastic framework, in full-saturated condition, based on Biot's Theory. A scalar damage model is assumed for this analysis. An implicit boundary element method (BEM) formulation, based on time-independent fundamental solutions, is developed and implemented to couple the fluid flow and two-dimensional elastostatic problems. The integration over boundary elements is evaluated using a numerical Gauss procedure. A semi-analytical scheme for the case of triangular domain cells is followed to carry out the relevant domain integrals. The non-linear problem is solved by a Newton-Raphson procedure. Numerical examples are presented, in order to validate the implemented formulation and to illustrate its efficacy. (C) 2011 Elsevier Ltd. All rights reserved.