3 resultados para Poricidal Anthers
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The euglossine bee Eulaema nigrita plays an important role for the pollination of native and economically important plants, such as the sweet passion-fruit Passiflora alata. E. nigrita uniquely collects the nectar from the flowers of P alata, nevertheless, it needs to visit other plants to collect pollen, nectar and other resources for its survival. There are two methods to identify the species of plants used by bees in their diet: by direct observation of the bees in the flowers, and through identification of pollen grains present in brood cells, feces, or in the bees' body. In order to identify the other plants that E. nigrita visits, we analyzed samples of pollen grains removed from the bee's body in the course of the flowering period of P alata. Among our results, the flora visited by E. nigrita comprised 40 species from 32 genera and 19 families, some of them used as a pollen source or just nectar. In spite of being a polyletic species, E. nigrita exhibited preference for some plant species with poricidal anthers. P alata which has high sugar concentration nectar was the main source of nectar for this bee in the studied area. Nonetheless, the pollinic analysis indicated that others nectariferous plant species are necessary to keep the populations of E. nigrita. Studies such as this one are important since they indicate supplementary pollen-nectar sources which must be used for the conservation of the populations of E. nigrita in crops neighbouring areas. In the absence of pollinators, growers are forced to pay for hand pollination, which increases production costs; keeping pollinators in cultivated areas is still more feasible to ensure sweet passion fruit production. Rev. Biol. Trop. 60 (4): 1553-1565. Epub 2012 December 01.
Resumo:
Lia Goncalves, Claudia Ines da Silva, and Maria Luisa Tunes Buschini (2012) Collection of pollen grains by Centris (Hemisiella) tarsata Smith (Apidae: Centridini): Is C. tarsata an oligolectic or polylectic species? Zoological Studies 51(2): 195-203. Among pollinator species, bees play a prominent role in maintaining biodiversity because they are responsible, on average, for 80% of angiosperm pollination in tropical regions. The species richness of the bee genus Centris is high in South America. In Brazil, these bees occur in many types of ecosystems. Centris tarsata is an endemic species occurring only in Brazil. No previous studies considered interactions between plants and this bee species in southern Brazil, where it is the most abundant trap-nesting bee. Accordingly, the goals of this study were to investigate plants used by this species for its larval food supply and determine if this bee is polylectic or oligolectic in this region. This work was conducted in the Parque Municipal das Araucarias, Guarapuava (PR), southern Brazil, from Mar. 2002 to Dec. 2003. Samples of pollen were collected from nests of these bees and from flowering plants in grassland and swamp areas where the nests were built. All of the samples were treated with acetolysis to obtain permanent slides. The family Solanaceae was visited most often (71%). Solanum americanum Mill. (28.6%) and Sol. variabile Mart. (42.4%) were the primary pollen sources for C. tarsata in the study area. We found that although C. tarsata visited 20 species of plants, it preferred Solanum species with poricidal anthers and pollen grains with high protein levels. This selective behavior by females of C. tarsata indicates that these bees are oligolectic in their larval provisioning in this region of southern Brazil. http://zoolstud.sinica.edu.tw/Journals/51.2/195.pdf
Resumo:
Pollen abortion occurs in virtually all species and often does not prejudice reproductive success. However, large numbers of abnormal pollen grains are characteristic of some groups. Among them is Miconia, in which partial and complete male sterility is often related to apomixis. In this study, we compared the morphology of pollen grains over several developmental stages in Miconia species with different rates of male sterility. Our aim was to improve the knowledge of mechanisms that lead to male sterility in this ecologically important tropical group. Routine techniques for microscopy were used to examine anthers in several developmental stages collected from the apomictic species Miconia albicans and M. stenostachya. Both species are completely male sterile since even the pollen grains with apparently normal cytoplasm were not able to develop a pollen tube. Meiosis is a rare event in M. albicans anthers and happens in an irregular way in M. stenostachya, leading to the pollen abortion. M. albicans has more severe abnormalities than M. stenostachya since even the microspores and pollen grain walls were affected. Moreover, in M. stenostachya, most mitosis occurring during microgametogenesis was also abnormal, leading to the formation of bicellular pollen grains with two similar cells, in addition to the formation of pollen grains of different sizes. Notably, abnormalities in both species did not reach the production of Ubisch bodies, suggesting little or no tapetum involvement in male sterility in these two species.