2 resultados para Porcine blood

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Purpose: Becoming proficient in laparoscopic surgery is dependent on the acquisition of specialized skills that can only be obtained from specific training. This training could be achieved in various ways using inanimate models, animal models, or live patient surgery-each with its own pros and cons. Currently, there are substantial data that support the benefits of animal model training in the initial learning of laparoscopy. Nevertheless, whether these benefits extent themselves to moderately experienced surgeons is uncertain. The purpose of this study was to determine if training using a porcine model results in a quantifiable gain in laparoscopic skills for moderately experienced laparoscopic surgeons. Materials and Methods: Six urologists with some laparoscopic experience were asked to perform a radical nephrectomy weekly for 10 weeks in a porcine model. The procedures were recorded, and surgical performance was assessed by two experienced laparoscopic surgeons using a previously published surgical performance assessment tool. The obtained data were then submitted to statistical analysis. Results: With training, blood loss was reduced approximately 45% when comparing the averages of the first and last surgical procedures (P = 0.006). Depth perception showed an improvement close to 35% (P = 0.041), and dexterity showed an improvement close to 25% (P = 0.011). Total operative time showed trends of improvement, although it was not significant (P = 0.158). Autonomy, efficiency, and tissue handling were the only aspects that did not show any noteworthy change (P = 0.202, P = 0.677, and P = 0.456, respectively). Conclusions: These findings suggest that there are quantifiable gains in laparoscopic skills obtained from training in an animal model. Our results suggest that these benefits also extend to more advanced stages of the learning curve, but it is unclear how far along the learning curve training with animal models provides a clear benefit for the performance of laparoscopic procedures. Future studies are necessary to confirm these findings and better understand the impact of this learning tool on surgical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Early treatment in sepsis may improve outcome. The aim of this study was to evaluate how the delay in starting resuscitation influences the severity of sepsis and the treatment needed to achieve hemodynamic stability. Design: Prospective, randomized, controlled experimental study. Setting: Experimental laboratory in a university hospital. Subjects: Thirty-two anesthetized and mechanically ventilated pigs. Interventions: Pigs were randomly assigned (n = 8 per group) to a nonseptic control group or one of three groups in which fecal peritonitis (peritoneal instillation of 2 g/kg autologous feces) was induced, and a 48-hr period of protocolized resuscitation started 6 (Delta T-6 hrs), 12 (Delta T-12 hrs), or 24 (Delta T-24 hrs) hrs later. The aim of this study was to evaluate the impact of delays in resuscitation on disease severity, need for resuscitation, and the development of sepsis-associated organ and mitochondrial dysfunction. Measurements and Main Results: Any delay in starting resuscitation was associated with progressive signs of hypovolemia and increased plasma levels of interleukin-6 and tumor necrosis factor-alpha prior to resuscitation. Delaying resuscitation increased cumulative net fluid balances (2.1 +/- 0.5 mL/kg/hr, 2.8 +/- 0.7 mL/kg/hr, and 3.2 +/- 1.5 mL/kg/hr, respectively, for groups.T-6 hrs, Delta T-12 hrs, and.T-24 hrs; p < .01) and norepinephrine requirements during the 48-hr resuscitation protocol (0.02 +/- 0.04 mu g/kg/min, 0.06 +/- 0.09 mu g/kg/min, and 0.13 +/- 0.15 mu g/kg/min; p = .059), decreased maximal brain mitochondrial complex II respiration (p = .048), and tended to increase mortality (p = .08). Muscle tissue adenosine triphosphate decreased in all groups (p < .01), with lowest values at the end in groups Delta T-12 hrs and.T-24 hrs. Conclusions: Increasing the delay between sepsis initiation and resuscitation increases disease severity, need for resuscitation, and sepsis-associated brain mitochondrial dysfunction. Our results support the concept of a critical window of opportunity in sepsis resuscitation. (Crit Care Med 2012; 40:2841-2849)