18 resultados para Polygonal faults
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
An experimental platform that allows application of internal faults on the armature windings of a specially modified synchronous generator in a controlled environment is described. It allows recording and studying current and voltage waveforms of internal fault conditions that may occur in a synchronous generator. Thus, traditional and new protection functions can be tested by using real data, and the transient response of the machine due to internal faults can be analyzed more closely. The hardware-software platform is described in detail, as well as all its control functions. The results can contribute significantly in new protection developments, as well as for educational purposes.
Resumo:
Cutting and packing problems are found in numerous industries such as garment, wood and shipbuilding. The collision free region concept is presented, as it represents all the translations possible for an item to be inserted into a container with already placed items. The often adopted nofit polygon concept and its analogous concept inner fit polygon are used to determine the collision free region. Boolean operations involving nofit polygons and inner fit polygons are used to determine the collision free region. New robust non-regularized Boolean operations algorithm is proposed to determine the collision free region. The algorithm is capable of dealing with degenerated boundaries. This capability is important because degenerated boundaries often represent local optimal placements. A parallelized version of the algorithm is also proposed and tests are performed in order to determine the execution times of both the serial and parallel versions of the algorithm.
Resumo:
The Columbia Channel (CCS) system is a depositional system located in the South Brazilian Basin, south of the Vitoria-Trindade volcanic chain. It lies in a WNW-ESE direction on the continental rise and abyssal plain, at a depth of between 4200 and 5200 m. It is formed by two depocenters elongated respectively south and north of the channel that show different sediment patterns. The area is swept by a deep western boundary current formed by AABW. The system has been previously interpreted has a mixed turbidite-contourite system. More detailed study of seismic data permits a more precise definition of the modern channel morphology, the system stratigraphy as well as the sedimentary processes and control. The modern CCS presents active erosion and/or transport along the channel. The ancient Oligo-Neogene system overlies a ""upper Cretaceous-Paleogene"" sedimentary substratum (Unit U1) bounded at the top by a major erosive ""late Eocene-early Oligocene"" discordance (D2). This ancient system is subdivided into 2 seismic units (U2 and U3). The thick basal U2 unit constitutes the larger part of the system. It consists of three subunits bounded by unconformities: D3 (""Oligocene-Miocene boundary""), D4 (""late Miocene"") and D5 (""late Pliocene""). The subunits have a fairly tabular geometry in the shallow NW depocenter associated with predominant turbidite deposits. They present a mounded shape in the deep NE depocenter, and are interpreted as forming a contourite drift. South of the channel, the deposits are interpreted as a contourite sheet drift. The surficial U3 unit forms a thin carpet of deposits. The beginning of the channel occurs at the end of U1 and during the formation of D2. Its location seems to have been determined by active faults. The channel has been active throughout the late Oligocene and Neogene and its depth increased continuously as a consequence of erosion of the channel floor and deposit aggradation along its margins. Such a mixed turbidite-contourite system (or fan drift) is characterized by frequent, rapid lateral facies variations and by unconformities that cross the whole system and are associated with increased AABW circulation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The basement rock of the Pampean flat-slab (Sierras Pampeanas) in the Central Andes was uplifted and rotated in the Cenozoic era. The Western Sierras Pampeanas are characterised by meta-igneous rocks of Grenvillian Mesoproterozoic age and metasedimentary units metamorphosed in the Ordovician period. These rocks, known as the northern Cuyania composite terrane, were derived from Laurentia and accreted toward Western Gondwana during the Early Paleozoic. The Sierra de Umango is the westernmost range of the Western Sierras Pampeanas.This range is bounded by the Devonian sedimentary rocks of the Precordillera on the western side and Tertiary rocks from the Sierra de Maz and Sierra del Espinal on the eastern side and contains igneous and sedimentary rocks outcroppings from the Famatina System on the far eastern side. The Sierra de Umango evolved during a period of polyphase tectonic activity, including an Ordovician collisional event, a Devonian compressional deformation, Late Paleozoic and Mesozoic extensional faulting and sedimentation (Paganzo and Ischigualasto basins) and compressional deformation of the Andean foreland during the Cenozoic. A Nappe System and an important shear zone, La Puntilla-La Falda Shear Zone (PFSZ), characterise the Ordovician collisional event, which was related to the accretion of Cuyania Terrane to the proto-Andean margin of Gondwana. Three continuous deformational phases are recognised for this event: the D1 phase is distinguished by relics of 51 preserved as internal foliation within interkinematic staurolite por-phyroblasts and likely represents the progressive metamorphic stage; the D2 phase exhibits P-T conditions close to the metamorphic peak that were recorded in an 52 transposition or a mylonitic foliation and determine the main structure of Umango; and the D3 phase is described as a set of tight to recumbent folds with S3 axial plane foliation, often related to thrust faults, indicating the retrogressive metamorphic stage. The Nappe System shows a top-to-the S/SW sense direction of movement, and the PFSZ served as a right lateral ramp in the exhumation process. This structural pattern is indicative of an oblique collision, with the Cuyania Terrane subducting under the proto-Andean margin of Gondwana in the NE direction. This continental subduction and exhumation lasted at least 30 million years, nearly the entire Ordovician period, and produced metamorphic conditions of upper amphibolite-to-granulite facies in medium- to high-pressure regimes. At least two later events deformed the earlier structures: D4 and D5 deformational phases. The D4 deformational phase corresponds to upright folding, with wavelengths of approximately 10 km and a general N-S orientation. These folds modified the S2 surface in an approximately cylindrical manner and are associated with exposed, discrete shear zones in the Silurian Guandacolinos Granite. The cylindrical pattern and subhorizontal axis of the D4 folds indicates that the S2 surface was originally flat-lying. The D4 folds are responsible for preserving the basement unit Juchi Orthogneiss synformal klippen. This deformation corresponds to the Chanica Tectonic during the interval between the Devonian and Carboniferous periods. The D5 deformational phase comprehends cuspate-lobate shaped open plunging folds with E W high-angle axes (D5 folds) and sub-vertical spaced cleavage. The D5 folds and related spaced cleavage deformed the previous structures and could be associated with uplifting during the Andean Cycle. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
An increasing volume of publications has addressed the role of tectonics in inland areas of northern Brazil during the Neogene and Quaternary, despite its location in a passive margin. Hence, northern South America plate in this time interval might have not been as passive as usually regarded. This proposal needs further support, particularly including field data. In this work, we applied an integrated approach to reveal tectonic structures in Miocene and late Quaternary strata in a coastal area of the Amazonas lowland. The investigation, undertaken in Marajo Island, mouth of the Amazonas River, consisted of shallow sub-surface geophysical data including vertical electric sounding and ground penetrating radar. These methods were combined with morphostructural analysis and sedimentological/stratigraphic data from shallow cores and a few outcrops. The results revealed two stratigraphic units, a lower one with Miocene age, and an upper one of Late Pleistocene-Holocene age. An abundance of faults and folds were recorded in the Miocene deposits and, to a minor extent, in overlying Late Pleistocene-Holocene strata. In addition to characterize these structures, we discuss their origin, considering three potential mechanisms: Andean tectonics, gravity tectonics related to sediment loading in the Amazon Fan, and rifting at the continental margin. Amongst these hypotheses, the most likely is that the faults and folds recorded in Marajo Island reflect tectonics associated with the history of continental rifting that gave rise to the South Atlantic Ocean. This study supports sediment deposition influenced by transpression and transtension associated with strike-slip divergence along the northern Equatorial Brazilian margin in the Miocene and Late Pleistocene-Holocene. This work records tectonic evidence only for the uppermost few ten of meters of this sedimentary succession. However, available geological data indicate a thickness of up to 6 km, which is remarkably thick for an area regarded as a passive margin. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Forward modeling is commonly applied to gravity field data of impact structures to determine the main gravity anomaly sources. In this context, we have developed 2.5-D gravity models of the Serra da Cangalha impact structure for the purpose of investigating geological bodies/structures underneath the crater. Interpretation of the models was supported by ground magnetic data acquired along profiles, as well as by high resolution aeromagnetic data. Ground magnetic data reveal the presence of short-wavelength anomalies probably related to shallow magnetic sources that could have been emplaced during the cratering process. Aeromagnetic data show that the basement underneath the crater occurs at an average depth of about 1.9 km, whereas in the region beneath the central uplift it is raised to 0.51 km below the current surface. These depths are also supported by 2.5-D gravity models showing a gentle relief for the basement beneath the central uplift area. Geophysical data were used to provide further constraints for numeral modeling of crater formation that provided important information on the structural modification that affected the rocks underneath the crater, as well as on shock-induced modifications of target rocks. The results showed that the morphology is consistent with the current observations of the crater and that Serra da Cangalha was formed by a meteorite of approximately 1.4 km diameter striking at 12 km s-1.
Central nervous system of Rhipicephalus sanguineus ticks (Acari: Ixodidae): an ultrastructural study
Resumo:
This study performed the ultrastructural description of the synganglion of Rhipicephalus sanguineus males and females, aiming to contribute to the understanding of the cellular organization of this organ. The results show that the central nervous system of these individuals consists of a mass of fused nerves, named synganglion, from where nerves emerge towards several parts of the body. It is surrounded by the neural lamella, a uniform and acellular layer, constituted by repeated layers of homogeneous and finely granular material. The perineurium is just below, composed of glial cells, which extensions invaginate throughout the nervous tissue. The synganglion is internally divided into an outer cortex, which contains the cellular bodies of the neural cells and an inner neuropile. The neural cells can be classified into two types according to cell size, cytoplasm-nucleus relation, and neurosecretory activity. Type I cells are oval or spherical and present a large nucleus occupying most part of the cytoplasm, which contains few organelles. Type 2 cells are polygonal, present a great cytoplasm volume, and their nuclei are located in the cell periphery. The cytoplasm of these cells contains a well-developed rough endoplasmic reticulum, Golgi regions, mitochondria, and several neurosecretory granules. The subperineurium and the tracheal ramifications are found between the cortex and the neuropile. The latter is formed mainly by neural fibers, tracheal elements, and glial cells. The results obtained show that R. sanguineus males' and females' nervous tissue present an ultrastructural organization similar to the one described in the literature for other tick species.
Resumo:
Building facilities have become important infrastructures for modern productive plants dedicated to services. In this context, the control systems of intelligent buildings have evolved while their reliability has evidently improved. However, the occurrence of faults is inevitable in systems conceived, constructed and operated by humans. Thus, a practical alternative approach is found to be very useful to reduce the consequences of faults. Yet, only few publications address intelligent building modeling processes that take into consideration the occurrence of faults and how to manage their consequences. In the light of the foregoing, a procedure is proposed for the modeling of intelligent building control systems, considersing their functional specifications in normal operation and in the of the event of faults. The proposed procedure adopts the concepts of discrete event systems and holons, and explores Petri nets and their extensions so as to represent the structure and operation of control systems for intelligent buildings under normal and abnormal situations. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Spectral decomposition has rarely been used to investigate complex networks. In this work we apply this concept in order to define two kinds of link-directed attacks while quantifying their respective effects on the topology. Several other kinds of more traditional attacks are also adopted and compared. These attacks had substantially diverse effects, depending on each specific network (models and real-world structures). It is also shown that the spectrally based attacks have special effects in affecting the transitivity of the networks.
Resumo:
A long-standing problem when testing from a deterministic finite state machine is to guarantee full fault coverage even if the faults introduce extra states in the implementations. It is well known that such tests should include the sequences in a traversal set which contains all input sequences of length defined by the number of extra states. This paper suggests the SPY method, which helps reduce the length of tests by distributing sequences of the traversal set and reducing test branching. It is also demonstrated that an additional assumption about the implementation under test relaxes the requirement of the complete traversal set. The results of the experimental comparison of the proposed method with an existing method indicate that the resulting reduction can reach 40%. Experimental results suggest that the additional assumption about the implementation can help in further reducing the test suite length. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Although the basic morphology of the Ediacaran metazoan Corumbella werneri (the type species of the genus) is well established, little is known about its skeletal tissue. Carbonaceous fragments of this fossil from the Itapucumi Group (Paraguay) reveal details of the ultrastructure of its carapace, providing an unprecedented opportunity to understand a paradigmatic issue of the evolution of skeletogenesis in early metazoans. Corumbella was a sessile predator whose carapace consisted of organic polygonal plates with pores and papillae similar to features observed in some conulariids. Its occurrence with the shelly fossil Cloudina suggests that the acquisition of protective structures in metazoans involved penecontemporaneous processes of biomineralization and secretion of organic walls.
Resumo:
New geochronological and geochemical constraints on Precambrian sedimentary and volcanic successions exposed in the western part of the Central Domain of the Borborema Province, NE Brazil, indicate the presence of two distinct tectono-stratigraphic complexes: Riacho Gravata and Sao Caetano. Both complexes and associated orthogneisses are referred in the literature as the Cariris Velhos belt, having depositional, extrusive, or intrusive ages within the interval 985-913 Ma. The Riacho Gravata complex consists of bimodal (but mostly felsic) volcanic and volcanoclastic rocks, muscovite+/-graphite schists, quartzites, and marble with local occurrences of banded-iron-formation. The Sao Caetano complex mainly consists of metagreywackes, marbles, calc-silicate rocks, and rare meta-mafic rocks. Meta-mafic rocks from both complexes have geochemical signatures similar to those of continental flood basalts, with epsilon Nd (1.0 Ga) values ranging from -1.0 to -2.8. Felsic volcanic rocks from the Riacho Gravata complex show epsilon Nd (1.0 Ga) values ranging from -1.0 to -7.4 and geochemical signatures similar to A(2)-type granitoids. New SHRIMP U-Pb zircon data from felsic volcanic rocks within the Riacho Gravata complex yielded ages of 1091 +/- 13 Ma and 996 +/- 13 Ma. In contrast, meta-graywackes from the Sao Caetano complex show a maximum deposition age of ca. 806 Ma in the northern part and ca. 862 Ma in the southern part of the outcrop area. The orthogneisses show epsilon Nd (1.0 Ga) values ranging from 1.0 to -4.2 with U/Pb TIMS and SHRIMP ages ranging from 960 to 926 Ma and geochemical signatures of A(2)-type granitoids. The data reported in this paper suggest at least two periods of extension within the Central Domain of the Borborema Province, the first starts ca. 1091 Ma with magmatism and deposition, creating the Riacho Gravata basin and continued intrusion of A-type granites to 920 Ma. A second rift event, which reactivated old faults, generated a basin with a maximum deposition age of ca. 806 Ma. Furthermore, the oldest granitoids cutting these metasedimentary rocks have crystallization ages of ca. 600 Ma. This suggests that the second rift event could be early Brasiliano in age. The resulting Sao Caetano basin received detritus from a variety of sources, although detritus from the Riacho Gravata complex dominated. Deposition ages of the Riacho Gravata and the Sao Caetano complexes are coeval with deposits in other basins of the Borborema Province (Riacho do Tigre in the Central Domain; Macurure and Maranco in the Sergipano Belt of the Southern domain). The Macaubas Group from SE Brazil and its counterparts in Africa, the Zadanian and Mayumbian Groups, in the western edge of the Congo Craton are also coeval. Closure of the Riacho Gravata and Sao Caetano basins occurred during the Brasiliano convergence (705-600 Ma). During the last stage of convergence, ca. 612 Ma, pull-apart basins were created and filled; final basin closure took place 605-592 Ma, after deposition ceased. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a comparison of descriptive statistics obtained for brittle structural lineaments extracted manually from LANDSAT images and shaded relief images from SRTM 3 DEM at 1:100, 000 and 1:500, 000 scales. The selected area is located in the southern of Brazil and comprises Precambrian rocks and stratigraphic units of the Paraná Basin. The application of this methodology shows that the visual interpretation depends on the kind of remote sensing image. The resulting descriptive statistics obtained for lineaments extracted from the images do not follow the same pattern according to the scale adopted. The main direction obtained for Proterozoic rocks using both image types at a 1:500, 000 scale are close to NS±10, whereas at a 1:100, 000 scale N45E was obtained for shaded relief images from SRTM 3 DEM and N10W for LANDSAT images. The Paleozoic sediments yielded the best results for the different images and scales (N50W). On the other hand, the Mesozoic igneous rocks showed greatest differences, the shaded relief images from SRTM 3 DEM images highlighting NE structures and the LANDSAT images highlighting NW structures. The accumulated frequency demonstrated high similarity between products for each image type no matter the scale, indicating that they can be used in multiscale studies. Conversely, major differences were found when comparing data obtained using shaded relief images from SRTM 3 DEM and Landsat images at a 1:100, 000 scale.
Resumo:
Abstract Background Carbohydrate (CHO) ingestion may be an interesting approach to avoid significant decrement to the tennis match performance. The aim of the present investigation was to assess the effects of CHO supplementation on tennis match play performance. Methods Twelve young tennis players (18.0 ± 1.0 years; 176 ± 3.4 cm; 68.0 ± 2.3 kg; body fat: 13.7 ± 2.4%) with national rankings among the top 50 in Brazil agreed to participate in this study, which utilized a randomized, crossover, double blind research design. The experiment was conducted over a 5-day period in which each player completed two simulated tennis matches of a 3-hour duration. The players received either a CHO or a placebo (PLA) drinking solution during simulated tennis matches. Athlete’s performance parameters were determined by filming each match with two video cameras. Each player was individually tracked for the entire duration of the match to measure the following variables: (1) games won; (2) rally duration; (3) strokes per rally; (4) effective playing time (%); (5) aces; (6) double faults; (7) first service in; (8) second service in; (9) first return in and (10) second return in. Results There were no differences between trials in any of the variables analyzed. Conclusions CHO supplementation did not improve tennis match play performance under the present experimental conditions.
Resumo:
Network reconfiguration for service restoration (SR) in distribution systems is a complex optimization problem. For large-scale distribution systems, it is computationally hard to find adequate SR plans in real time since the problem is combinatorial and non-linear, involving several constraints and objectives. Two Multi-Objective Evolutionary Algorithms that use Node-Depth Encoding (NDE) have proved able to efficiently generate adequate SR plans for large distribution systems: (i) one of them is the hybridization of the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) with NDE, named NSGA-N; (ii) the other is a Multi-Objective Evolutionary Algorithm based on subpopulation tables that uses NDE, named MEAN. Further challenges are faced now, i.e. the design of SR plans for larger systems as good as those for relatively smaller ones and for multiple faults as good as those for one fault (single fault). In order to tackle both challenges, this paper proposes a method that results from the combination of NSGA-N, MEAN and a new heuristic. Such a heuristic focuses on the application of NDE operators to alarming network zones according to technical constraints. The method generates similar quality SR plans in distribution systems of significantly different sizes (from 3860 to 30,880 buses). Moreover, the number of switching operations required to implement the SR plans generated by the proposed method increases in a moderate way with the number of faults.