3 resultados para Plastic behaviour
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Wild bearded capuchins, Cebus libidinosus, in Fazenda Boa Vista, Brazil crack tough palm nuts using hammer stones. We analysed the contribution of intrinsic factors (body weight, behaviour), size of the nuts and the anvil surface (flat or pit) to the efficiency of cracking. We provided capuchins with local palm nuts and a single hammer stone at an anvil. From video we scored the capuchins` position and actions with the nut prior to each strike, and outcomes of each strike. The most efficient capuchin opened 15 nuts per 100 strikes (6.6 strikes per nut). The least efficient capuchin that succeeded in opening a nut opened 1.32 nuts per 100 strikes (more than 75 strikes per nut). Body weight and diameter of the nut best predicted whether a capuchin would crack a nut on a given strike. All the capuchins consistently placed nuts into pits. To provide an independent analysis of the effect of placing the nut into a pit, we filmed an adult human cracking nuts on the same anvil using the same stone. The human displaced the nut on proportionally fewer strikes when he placed it into a pit rather than on a flat surface. Thus the capuchins placed the nut in a more effective location on the anvil to crack it. Nut cracking as practised by bearded capuchins is a striking example of a plastic behaviour where costs and benefits vary enormously across individuals, and where efficiency requires years to attain. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
When a scaled structure (model or replica) is used to predict the response of a full-size compound (prototype), the model geometric dimensions should relate to the corresponding prototype dimensions by a single scaling factor. However, owing to manufacturing technical restrictions, this condition cannot be accomplished for some of the dimensions in real structures. Accordingly, the distorted geometry will not comply with the overall geometric scaling factor, infringing the Pi theorem requirements for complete dynamic similarity. In the present study, a method which takes geometrical distortions into account is introduced, leading to a model similar to the prototype. As a means to infer the performance of this method, three analytical problems of structures subjected to dynamic loads are analysed. It is shown that the replica developed applying this technique is able to accurately predict the full-size structure behaviour even when the studied models have some of their dimensions severely distorted. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A central goal in unsaturated soil mechanics research is to create a smooth transition between traditional soil mechanics approaches and an approach that is applicable to unsaturated soils. Undrained shear strength and the liquidity index of reconstituted or remoulded saturated soils are consistently correlated, which has been demonstrated by many studies. In the liquidity index range from 1 (at w(l)) to 0 (at w(p)), the shear strength ranges from approximately 2 kPa to 200 kPa. Similarly, for compacted soil, the shear strength at the plastic limit ranges from 150 kPa to 250 kPa. When compacted at their optimum water content, most soils have a suction that ranges from 20 kPa to 500 kPa; however, in the field, compacted materials are subjected to drying and wetting, which affect their initial suction and as a consequence their shear strength. Unconfined shear tests were performed on five compacted tropical soils and kaolin. Specimens were tested in the as-compacted condition, and also after undergoing drying or wetting. The test results and data from prior literature were examined, taking into account the roles of void ratio, suction, and relative water content. An interpretation of the phenomena that are involved in the development of the undrained shear strength of unsaturated soils in the contexts of soil water retention and Atterberg limits is presented, providing a practical view of the behaviour of compacted soil based on the concept of unsaturated soil. Finally, an empirical correlation is presented that relates the unsaturated state of compacted soils to the unconfined shear strength.