5 resultados para Plasma fractions
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The chemical and physical properties of a Brazilian heavy oil submitted to plasma treatment were investigated by H-1 low-and high-field nuclear magnetic resonance (NMR) combined to the characterization of rheological properties, thermogravimetry and measurement of basic sediments and water (BSW) content. The crude oil was treated in a dielectric barrier discharge plasma reactor, using natural gas, CO2 or H-2 as working gas. The results indicated a large drop in the water content of the plasma-treated samples as compared to the crude oil, giving rise to a reduction in the viscosity. No significant chemical change was produced in the oil portion itself, as observed by H-1 NMR. The water contents determined by H-1 low-field NMR analyses agreed well with those obtained by BSW, indicating the low-field NMR methods as a useful tool for following the effects of plasma treatments on heavy oils, allowing the separation of the effects caused on the water and oil fractions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: Glucose transporter 4 (GLUT4) is highly expressed in muscle and fat tissue, where triiodothyronine (T-3) induces solute carrier family 2 facilitated glucose transporter member 4 (SLC2A4) gene transcription. T-3 was also shown to rapidly increase glucose uptake in myocytes exposed to cycloheximide, indicating that it might act nongenomically to regulate GLUT4 availability. We tested this hypothesis by evaluating, in thyroidectomized rats (Tx rats), the acute and/or chronic T-3 effects on GLUT4 mRNA expression and polyadenylation, protein content, and trafficking to the plasma membrane (PM) in skeletal muscle, as well as on blood glucose disappearance rate (kITT) after insulin administration. Methods: Rats were surgically thyroidectomized and treated with T-3 (0.3 to 100 mu g/100 g body weight) from 10 minutes to 5 days, and killed thereafter. Sham-operated (SO) rats were used as controls. Total RNA was extracted from the skeletal muscles (soleus [SOL] and extensorum digitalis longus [EDL]) and subjected to Northern blotting analysis using rat GLUT4 cDNA probe. Total protein was extracted and subjected to specific centrifugations for subcellular fractionation, and PM as well as microsomal (M) fractions were subjected to Western blotting analysis, using anti-GLUT4 antiserum as a probe. GLUT4 mRNA polyadenylation was examined by a rapid amplification of cDNA ends-poly(A) test (RACE-PAT). Results: Thyroidectomy reduced skeletal muscle GLUT4 mRNA, mRNA poly(A) tail length, protein content, and trafficking to the PM, as well as the kITT. The acute T-3 treatment rapidly (30 minutes) increased all these parameters compared with Tx rats. The 5-day T-3 treatment increased GLUT4 mRNA and protein expression, and restored GLUT4 trafficking to the PM and kITT to SO values. Conclusions: The results presented here show for the first time that, in parallel to its transcriptional action on the SLC2A4 gene, T-3 exerts a rapid post-transcriptional effect on GLUT4 mRNA polyadenylation, which might increase transcript stability and translation efficiency, leading to the increased GLUT4 content and availability to skeletal muscle, as well as on GLUT4 translocation to the PM, improving the insulin sensitivity, as shown by the kITT.
Resumo:
This study describes the enantioselective analysis of unbound and total concentrations of tramadol and its main metabolites O-desmethyltramadol (M1) and N-desmethyltramadol (M2) in human plasma. Sample preparation was preceded by an ultrafiltration step to separate the unbound drug. Both the ultrafiltrate and plasma samples were submitted to liquid/liquid extraction with methyl t-butyl ether. Separation was performed on a Chiralpak (R) AD column and tandem mass spectrometry consisting of an electrospray ionization source, positive ion mode and multiple reaction monitoring was used as the detection system. Linearity was observed in the following ranges: 0.2-600 and 0.5-250 ng/mL for analysis of total and unbound concentrations of the tramadol enantiomers, respectively, and 0.1-300 and 0.25-125 ng/mL for total and unbound concentrations of the M1 and M2 enantiomers, respectively. The lower limits of quantitation were 0.2 and 0.5 ng/mL for analysis of total and unbound concentration of each tramadol enantiomer, respectively, and 0.1 and 0.25 ng/mL for total and unbound concentrations of M1 and M2 enantiomers, respectively. Intra- and interassay reproducibility and inaccuracy did not exceed 15%. Clinical application of the method to patients with neuropathic pain showed plasma accumulation of (+)-tramadol and (+)-M2 after a single oral dose of racemic tramadol. Fractions unbound of tramadol, M1 or M2 were not enantioselective in the patients investigated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: Glucose intolerance is frequently associated with an altered plasma lipid profile and increased cardiovascular disease risk. Nonetheless, lipid metabolism is scarcely studied in normolipidemic glucose-intolerant patients. The aim of this study was to investigate whether important lipid metabolic parameters, such as the kinetics of LDL free and esterified cholesterol and the transfer of lipids to HDL, are altered in glucose-intolerant patients with normal plasma lipids. METHODS: Fourteen glucose-intolerant patients and 15 control patients were studied; none of the patients had cardiovascular disease manifestations, and they were paired for age, sex, race and co-morbidities. A nanoemulsion resembling a LDL lipid composition (LDE) labeled with C-14-cholesteryl ester and H-3-free cholesterol was intravenously injected, and blood samples were collected over a 24-h period to determine the fractional clearance rate of the labels by compartmental analysis. The transfer of free and esterified cholesterol, triglycerides and phospholipids from the LDE to HDL was measured by the incubation of the LDE with plasma and radioactivity counting of the supernatant after chemical precipitation of non-HDL fractions. RESULTS: The levels of LDL, non-HDL and HDL cholesterol, triglycerides, apo A1 and apo B were equal in both groups. The 14 C-esterified cholesterol fractional clearance rate was not different between glucose-intolerant and control patients, but the H-3-free- cholesterol fractional clearance rate was greater in glucose-intolerant patients than in control patients. The lipid transfer to HDL was equal in both groups. CONCLUSION: In these glucose-intolerant patients with normal plasma lipids, a faster removal of LDE free cholesterol was the only lipid metabolic alteration detected in our study. This finding suggests that the dissociation of free cholesterol from lipoprotein particles occurs in normolipidemic glucose intolerance and may participate in atherogenic signaling.
Resumo:
OBJECTIVE: Glucose intolerance is frequently associated with an altered plasma lipid profile and increased cardiovascular disease risk. Nonetheless, lipid metabolism is scarcely studied in normolipidemic glucose-intolerant patients. The aim of this study was to investigate whether important lipid metabolic parameters, such as the kinetics of LDL free and esterified cholesterol and the transfer of lipids to HDL, are altered in glucose-intolerant patients with normal plasma lipids. METHODS: Fourteen glucose-intolerant patients and 15 control patients were studied; none of the patients had cardiovascular disease manifestations, and they were paired for age, sex, race and co-morbidities. A nanoemulsion resembling a LDL lipid composition (LDE) labeled with 14C-cholesteryl ester and ³H-free cholesterol was intravenously injected, and blood samples were collected over a 24-h period to determine the fractional clearance rate of the labels by compartmental analysis. The transfer of free and esterified cholesterol, triglycerides and phospholipids from the LDE to HDL was measured by the incubation of the LDE with plasma and radioactivity counting of the supernatant after chemical precipitation of non-HDL fractions. RESULTS: The levels of LDL, non-HDL and HDL cholesterol, triglycerides, apo A1 and apo B were equal in both groups. The 14C-esterified cholesterol fractional clearance rate was not different between glucose-intolerant and control patients, but the ³H-free-cholesterol fractional clearance rate was greater in glucose-intolerant patients than in control patients. The lipid transfer to HDL was equal in both groups. CONCLUSION: In these glucose-intolerant patients with normal plasma lipids, a faster removal of LDE free cholesterol was the only lipid metabolic alteration detected in our study. This finding suggests that the dissociation of free cholesterol from lipoprotein particles occurs in normolipidemic glucose intolerance and may participate in atherogenic signaling.